3 research outputs found

    Self regulating body bias generator

    Get PDF
    The back bias voltage on a functional circuit is controlled through a closed loop process. A delay element receives a clock pulse and produces a delay output. The delay element is advantageously constructed of the same materials as the functional circuit so that the aging and degradation of the delay element parallels the degradation of the functional circuit. As the delay element degrades, the transistor switching time increases, increasing the time delay of the delay output. An AND gate compares a clock pulse to an output pulse of the delay element, the AND output forming a control pulse. A duty cycle of the control pulse is determined by the delay time between the clock pulse and the delay element output. The control pulse is received at the input of a charge pump. The charge pump produces a back bias voltage which is then applied to the delay element and to the functional circuit. If the time delay produced by the delay element exceeds the optimal delay, the duty cycle of the control pulse is shortened, and the back bias voltage is lowered, thereby increasing the switching speed of the transistors in the delay element and reducing the time delay. If the throughput of the delay element is too fast, the duty cycle of the control pulse is lengthened, raising the back bias voltage produced by the charge pump. This, in turn, lowers the switching speed of the transistors in both the delay element and the functional circuit. The slower switching speed in the delay element increases time delay. In this manner, the switching speed of the delay element, and of the functional circuit, is maintained at a constant level over the life of the circuit

    A delay distribution squeezing scheme with speed-adaptive threshold-voltage CMOS (SA-Vt CMOS) for low voltage LSIs

    No full text
    In a speed-adaptive threshold-voltage CMOS (SA-Vt CMOS) circuit, the substrate bias is controlled so that delay in the circuit stays constant. Distributions of device speeds are squeezed under fast-operation conditions. With a ring oscillator using 0.25-µm CMOS devices as a test circuit, we found that the worst-case operating frequency was improved from 20 MHz to 55 MHz, and the fluctuation of the operating frequency was suppressed from 44 % to 15 % while the supply-voltage variation was under 0.1 V with a 1.8 V supply voltage. 1

    A Systematic Review and Meta-Analysis of the Incidence of Injury in Professional Female Soccer

    Get PDF
    The epidemiology of injury in male professional football is well documented and has been used as a basis to monitor injury trends and implement injury prevention strategies. There are no systematic reviews that have investigated injury incidence in women’s professional football. Therefore, the extent of injury burden in women’s professional football remains unknown. PURPOSE: The primary aim of this study was to calculate an overall incidence rate of injury in senior female professional soccer. The secondary aims were to provide an incidence rate for training and match play. METHODS: PubMed, Discover, EBSCO, Embase and ScienceDirect electronic databases were searched from inception to September 2018. Two reviewers independently assessed study quality using the Strengthening the Reporting of Observational Studies in Epidemiology statement using a 22-item STROBE checklist. Seven prospective studies (n=1137 professional players) were combined in a pooled analysis of injury incidence using a mixed effects model. Heterogeneity was evaluated using the Cochrane Q statistic and I2. RESULTS: The epidemiological incidence proportion over one season was 0.62 (95% CI 0.59 - 0.64). Mean total incidence of injury was 3.15 (95% CI 1.54 - 4.75) injuries per 1000 hours. The mean incidence of injury during match play was 10.72 (95% CI 9.11 - 12.33) and during training was 2.21 (95% CI 0.96 - 3.45). Data analysis found a significant level of heterogeneity (total Incidence, X2 = 16.57 P < 0.05; I2 = 63.8%) and during subsequent sub group analyses in those studies reviewed (match incidence, X2 = 76.4 (d.f. = 7), P <0.05; I2 = 90.8%, training incidence, X2 = 16.97 (d.f. = 7), P < 0.05; I2 = 58.8%). Appraisal of the study methodologies revealed inconsistency in the use of injury terminology, data collection procedures and calculation of exposure by researchers. Such inconsistencies likely contribute to the large variance in the incidence and prevalence of injury reported. CONCLUSIONS: The estimated risk of sustaining at least one injury over one football season is 62%. Continued reporting of heterogeneous results in population samples limits meaningful comparison of studies. Standardising the criteria used to attribute injury and activity coupled with more accurate methods of calculating exposure will overcome such limitations
    corecore