346 research outputs found

    Application of RBFNNs Incorporating MIMO Processes for Simultaneous River Flow Forecasting

    Get PDF
    Simultaneous flow forecasting using multi-input multi-output (MIMO) processes is an efficient technique for accurate flow forecasting on river systems. The present study demonstrates the capability of radial basis function neural networks (RBFNN) incorporating MIMO processes in simultaneous river flow forecasting. The river system considered in the present study was the Barak river system, Assam, India. Hourly concurrent discharge data were collected from the Central Water Commission, Shillong, India from multiple sections of the Barak river system. The forecasts were tested for short-range time horizons, i.e. 1, 3, 6 and 12 hours in advance, and a comparative analysis was done using the popular Nonlinear Autoregressive with Exogenous Inputs (NARX) time series model. The result shows that MIMO-NARX provided higher prediction accuracy than MIMO-RBFNN, even at longer lead times when compared to following various statistical criterions

    Tracking times in temporal patterns embodied in intra-cortical data for controling neural prosthesis an animal simulation study

    Get PDF
    Brain-machines capture brain signals in order to restore communication and movement to disabled people who suffer from brain palsy or motor disorders. In brain regions, the ensemble firing of populations of neurons represents spatio-temporal patterns that are transformed into outgoing spatio-temporal patterns which encode complex cognitive task. This transformation is dynamic, non-stationary (time-varying) and highly nonlinear. Hence, modeling such complex biological patterns requires specific model structures to uncover the underlying physiological mechanisms and their influences on system behavior. In this study, a recent multi-electrode technology allows the record of the simultaneous neuron activities in behaving animals. Intra-cortical data are processed according to these steps: spike detection and sorting, than desired action extraction from the rate of the obtained signal. We focus on the following important questions about (i) the possibility of linking the brain signal time events with some time-delayed mapping tools; (ii) the use of some suitable inputs than others for the decoder; (iii) a consideration of separated data or a special representation founded on multi-dimensional statistics. This paper concentrates mostly on the analysis of parallel spike train when certain critical hypotheses are ignored by the data for the working method. We have made efforts to define explicitly whether the underlying hypotheses are actually achieved. In this paper, we propose an algorithm to define the embedded memory order of NARX recurrent neural networks to the hand trajectory tracking process. We also demonstrate that this algorithm can improve performance on inference tasks

    EFFICIENT FATIGUE LIFE ASSESSMENT OF COMPOSITE MATERIALS BY USING A HYBRID SURROGATE MODELING

    Get PDF
    In this study, hybrid surrogate and nonlinear autoregressive with exogenous inputs (NARX) model is developed and presented as data-driven based predictive model for efficient fatigue life assessment of composite materials. Surrogate modeling based upon wavelet neural networks (WNN) is employed to efficiently unveil mathematical pattern in S-N data, but costly to get from experiments. Moreover, the NARX architecture is chosen in order to enable multi-step ahead prediction in fatigue life assessment of multivariable amplitude loadings. By observing fatigue data as dynamic data of stress ratio series, it is shown that the hybrid model produces reasonably accurate fatigue life prediction by using fatigue data from two stress ratio values only. The use of two stress ratio values also allows usage of more limited fatigue data in the lifetime prediction. The WNN-NARX surrogate model is tested with well-known fatigue data in literature. Several composite materials examined in this study show the efficacy and robustness of the proposed model

    Effect of time history on normal behaviour modelling using SCADA data to predict wind turbine failures

    Get PDF
    Operations and Maintenance (O&M) can make up a significant proportion of lifetime costs associated with any wind farm, with up to 30% reported for some offshore developments. It is increasingly important for wind farm owners and operators to optimise their assets in order to reduce the levelised cost of energy (LCoE). Reducing downtime through condition-based maintenance is a promising strategy of realising these goals. This is made possible through increased monitoring and gathering of operational data. SCADA data are useful in terms of wind turbine condition monitoring. This paper aims to perform a comprehensive comparison between two types of normal behaviour modelling: full signal reconstruction (FSRC) and autoregressive models with exogenous inputs (ARX). At the same time, the effects of the training time period on model performance are explored by considering models trained with both 12 and 6 months of data. Finally, the effects of time resolution are analysed for each algorithm by considering models trained and tested with both 10 and 60 min averaged data. Two different cases of wind turbine faults are examined. In both cases, the NARX model trained with 12 months of 10 min average Supervisory Control And Data Acquisition (SCADA) data had the best training performance
    • …
    corecore