31,069 research outputs found

    Multiplicity estimates, analytic cycles and Newton polytopes

    Full text link
    We consider the problem of estimating the multiplicity of a polynomial when restricted to the smooth analytic trajectory of a (possibly singular) polynomial vector field at a given point or points, under an assumption known as the D-property. Nesterenko has developed an elimination theoretic approach to this problem which has been widely used in transcendental number theory. We propose an alternative approach to this problem based on more local analytic considerations. In particular we obtain simpler proofs to many of the best known estimates, and give more general formulations in terms of Newton polytopes, analogous to the Bernstein-Kushnirenko theorem. We also improve the estimate's dependence on the ambient dimension from doubly-exponential to an essentially optimal single-exponential.Comment: Some editorial modifications to improve readability; No essential mathematical change

    On Universal Properties of Capacity-Approaching LDPC Ensembles

    Full text link
    This paper is focused on the derivation of some universal properties of capacity-approaching low-density parity-check (LDPC) code ensembles whose transmission takes place over memoryless binary-input output-symmetric (MBIOS) channels. Properties of the degree distributions, graphical complexity and the number of fundamental cycles in the bipartite graphs are considered via the derivation of information-theoretic bounds. These bounds are expressed in terms of the target block/ bit error probability and the gap (in rate) to capacity. Most of the bounds are general for any decoding algorithm, and some others are proved under belief propagation (BP) decoding. Proving these bounds under a certain decoding algorithm, validates them automatically also under any sub-optimal decoding algorithm. A proper modification of these bounds makes them universal for the set of all MBIOS channels which exhibit a given capacity. Bounds on the degree distributions and graphical complexity apply to finite-length LDPC codes and to the asymptotic case of an infinite block length. The bounds are compared with capacity-approaching LDPC code ensembles under BP decoding, and they are shown to be informative and are easy to calculate. Finally, some interesting open problems are considered.Comment: Published in the IEEE Trans. on Information Theory, vol. 55, no. 7, pp. 2956 - 2990, July 200

    On graph combinatorics to improve eigenvector-based measures of centrality in directed networks

    Get PDF
    Producción CientíficaWe present a combinatorial study on the rearrangement of links in the structure of directed networks for the purpose of improving the valuation of a vertex or group of vertices as established by an eigenvector-based centrality measure. We build our topological classification starting from unidirectional rooted trees and up to more complex hierarchical structures such as acyclic digraphs, bidirectional and cyclical rooted trees (obtained by closing cycles on unidirectional trees). We analyze different modifications on the structure of these networks and study their effect on the valuation given by the eigenvector-based scoring functions, with particular focus on α-centrality and PageRank.Ministerio de Economía, Industria y Competitividad (project TIN2014-57226-P)Generalitat de Catalunya (project SGR2014- 890)Ministerio de Ciencia, Innovación y Universidades (project MTM2012-36917-C03-01

    Linear Forests and Ordered Cycles

    Get PDF
    https://digitalcommons.memphis.edu/speccoll-faudreerj/1224/thumbnail.jp

    Parameterized Rural Postman Problem

    Full text link
    The Directed Rural Postman Problem (DRPP) can be formulated as follows: given a strongly connected directed multigraph D=(V,A)D=(V,A) with nonnegative integral weights on the arcs, a subset RR of AA and a nonnegative integer ℓ\ell, decide whether DD has a closed directed walk containing every arc of RR and of total weight at most ℓ\ell. Let kk be the number of weakly connected components in the the subgraph of DD induced by RR. Sorge et al. (2012) ask whether the DRPP is fixed-parameter tractable (FPT) when parameterized by kk, i.e., whether there is an algorithm of running time O∗(f(k))O^*(f(k)) where ff is a function of kk only and the O∗O^* notation suppresses polynomial factors. Sorge et al. (2012) note that this question is of significant practical relevance and has been open for more than thirty years. Using an algebraic approach, we prove that DRPP has a randomized algorithm of running time O∗(2k)O^*(2^k) when ℓ\ell is bounded by a polynomial in the number of vertices in DD. We also show that the same result holds for the undirected version of DRPP, where DD is a connected undirected multigraph
    • …
    corecore