12,988 research outputs found

    Embedding large subgraphs into dense graphs

    Full text link
    What conditions ensure that a graph G contains some given spanning subgraph H? The most famous examples of results of this kind are probably Dirac's theorem on Hamilton cycles and Tutte's theorem on perfect matchings. Perfect matchings are generalized by perfect F-packings, where instead of covering all the vertices of G by disjoint edges, we want to cover G by disjoint copies of a (small) graph F. It is unlikely that there is a characterization of all graphs G which contain a perfect F-packing, so as in the case of Dirac's theorem it makes sense to study conditions on the minimum degree of G which guarantee a perfect F-packing. The Regularity lemma of Szemeredi and the Blow-up lemma of Komlos, Sarkozy and Szemeredi have proved to be powerful tools in attacking such problems and quite recently, several long-standing problems and conjectures in the area have been solved using these. In this survey, we give an outline of recent progress (with our main emphasis on F-packings, Hamiltonicity problems and tree embeddings) and describe some of the methods involved

    Vertex-Coloring Edge-Weighting of Bipartite Graphs with Two Edge Weights

    Full text link
    Let GG be a graph and S\mathcal {S} be a subset of ZZ. A vertex-coloring S\mathcal {S}-edge-weighting of GG is an assignment of weight ss by the elements of S\mathcal {S} to each edge of GG so that adjacent vertices have different sums of incident edges weights. It was proved that every 3-connected bipartite graph admits a vertex-coloring {1,2}\{1,2\}-edge-weighting (Lu, Yu and Zhang, (2011) \cite{LYZ}). In this paper, we show that the following result: if a 3-edge-connected bipartite graph GG with minimum degree δ\delta contains a vertex uV(G)u\in V(G) such that dG(u)=δd_G(u)=\delta and GuG-u is connected, then GG admits a vertex-coloring S\mathcal {S}-edge-weighting for S{{0,1},{1,2}}\mathcal {S}\in \{\{0,1\},\{1,2\}\}. In particular, we show that every 2-connected and 3-edge-connected bipartite graph admits a vertex-coloring S\mathcal {S}-edge-weighting for S{{0,1},{1,2}}\mathcal {S}\in \{\{0,1\},\{1,2\}\}. The bound is sharp, since there exists a family of infinite bipartite graphs which are 2-connected and do not admit vertex-coloring {1,2}\{1,2\}-edge-weightings or vertex-coloring {0,1}\{0,1\}-edge-weightings.Comment: In this paper, we show that every 2-connected and 3-edge-connected bipartite graph admits a vertex-coloring S-edge-weighting for S\in {{0,1},{1,2}

    Regular spanning subgraphs of bipartite graphs of high minimum degree

    Full text link
    Let G be a simple balanced bipartite graph on 2n2n vertices, δ=δ(G)/n\delta = \delta(G)/n, and ρ=δ+2δ12\rho={\delta + \sqrt{2 \delta -1} \over 2}. If δ>1/2\delta > 1/2 then it has a ρn\lfloor \rho n \rfloor-regular spanning subgraph. The statement is nearly tight.Comment: submitte
    corecore