4,655 research outputs found

    Vertex Sparsifiers: New Results from Old Techniques

    Get PDF
    Given a capacitated graph G=(V,E)G = (V,E) and a set of terminals KVK \subseteq V, how should we produce a graph HH only on the terminals KK so that every (multicommodity) flow between the terminals in GG could be supported in HH with low congestion, and vice versa? (Such a graph HH is called a flow-sparsifier for GG.) What if we want HH to be a "simple" graph? What if we allow HH to be a convex combination of simple graphs? Improving on results of Moitra [FOCS 2009] and Leighton and Moitra [STOC 2010], we give efficient algorithms for constructing: (a) a flow-sparsifier HH that maintains congestion up to a factor of O(logk/loglogk)O(\log k/\log \log k), where k=Kk = |K|, (b) a convex combination of trees over the terminals KK that maintains congestion up to a factor of O(logk)O(\log k), and (c) for a planar graph GG, a convex combination of planar graphs that maintains congestion up to a constant factor. This requires us to give a new algorithm for the 0-extension problem, the first one in which the preimages of each terminal are connected in GG. Moreover, this result extends to minor-closed families of graphs. Our improved bounds immediately imply improved approximation guarantees for several terminal-based cut and ordering problems.Comment: An extended abstract appears in the 13th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), 2010. Final version to appear in SIAM J. Computin

    Restricted non-separable planar maps and some pattern avoiding permutations

    Full text link
    Tutte founded the theory of enumeration of planar maps in a series of papers in the 1960s. Rooted non-separable planar maps are in bijection with West-2-stack-sortable permutations, beta(1,0)-trees introduced by Cori, Jacquard and Schaeffer in 1997, as well as a family of permutations defined by the avoidance of two four letter patterns. In this paper we give upper and lower bounds on the number of multiple-edge-free rooted non-separable planar maps. We also use the bijection between rooted non-separable planar maps and a certain class of permutations, found by Claesson, Kitaev and Steingrimsson in 2009, to show that the number of 2-faces (excluding the root-face) in a map equals the number of occurrences of a certain mesh pattern in the permutations. We further show that this number is also the number of nodes in the corresponding beta(1,0)-tree that are single children with maximum label. Finally, we give asymptotics for some of our enumerative results.Comment: 18 pages, 14 figure

    Spanning trees short or small

    Full text link
    We study the problem of finding small trees. Classical network design problems are considered with the additional constraint that only a specified number kk of nodes are required to be connected in the solution. A prototypical example is the kkMST problem in which we require a tree of minimum weight spanning at least kk nodes in an edge-weighted graph. We show that the kkMST problem is NP-hard even for points in the Euclidean plane. We provide approximation algorithms with performance ratio 2k2\sqrt{k} for the general edge-weighted case and O(k1/4)O(k^{1/4}) for the case of points in the plane. Polynomial-time exact solutions are also presented for the class of decomposable graphs which includes trees, series-parallel graphs, and bounded bandwidth graphs, and for points on the boundary of a convex region in the Euclidean plane. We also investigate the problem of finding short trees, and more generally, that of finding networks with minimum diameter. A simple technique is used to provide a polynomial-time solution for finding kk-trees of minimum diameter. We identify easy and hard problems arising in finding short networks using a framework due to T. C. Hu.Comment: 27 page

    Obstructions to weak decomposability for simplicial polytopes

    Full text link
    Provan and Billera introduced notions of (weak) decomposability of simplicial complexes as a means of attempting to prove polynomial upper bounds on the diameter of the facet-ridge graph of a simplicial polytope. Recently, De Loera and Klee provided the first examples of simplicial polytopes that are not weakly vertex-decomposable. These polytopes are polar to certain simple transportation polytopes. In this paper, we refine their analysis to prove that these dd-dimensional polytopes are not even weakly O(d)O(\sqrt{d})-decomposable. As a consequence, (weak) decomposability cannot be used to prove a polynomial version of the Hirsch conjecture

    Regularity of Edge Ideals and Their Powers

    Full text link
    We survey recent studies on the Castelnuovo-Mumford regularity of edge ideals of graphs and their powers. Our focus is on bounds and exact values of  reg I(G)\text{ reg } I(G) and the asymptotic linear function  reg I(G)q\text{ reg } I(G)^q, for q1,q \geq 1, in terms of combinatorial data of the given graph G.G.Comment: 31 pages, 15 figure
    corecore