1,319 research outputs found

    Analyzing Machine Learning Models for Credit Scoring with Explainable AI and Optimizing Investment Decisions

    Full text link
    This paper examines two different yet related questions related to explainable AI (XAI) practices. Machine learning (ML) is increasingly important in financial services, such as pre-approval, credit underwriting, investments, and various front-end and back-end activities. Machine Learning can automatically detect non-linearities and interactions in training data, facilitating faster and more accurate credit decisions. However, machine learning models are opaque and hard to explain, which are critical elements needed for establishing a reliable technology. The study compares various machine learning models, including single classifiers (logistic regression, decision trees, LDA, QDA), heterogeneous ensembles (AdaBoost, Random Forest), and sequential neural networks. The results indicate that ensemble classifiers and neural networks outperform. In addition, two advanced post-hoc model agnostic explainability techniques - LIME and SHAP are utilized to assess ML-based credit scoring models using the open-access datasets offered by US-based P2P Lending Platform, Lending Club. For this study, we are also using machine learning algorithms to develop new investment models and explore portfolio strategies that can maximize profitability while minimizing risk

    Default Prediction of Internet Finance Users Based on Imbalance-XGBoost

    Get PDF
    Fast and accurate identification of financial fraud is a challenge in Internet finance. Based on the characteristics of imbalanced distribution of Internet financial data, this paper integrates machine learning methods and Internet financial data to propose a prediction model for loan defaults, and proves its effectiveness and generalizability through empirical research. In this paper, we introduce a processing method (link processing method) for imbalance data based on the traditional early warning model. In this paper, we conduct experiments using the financial dataset of Lending Club platform and prove that our model is superior to XGBoost, NGBoost, Ada Boost, and GBDT in the prediction of default risk

    Machine learning-driven credit risk: a systemic review

    Get PDF
    Credit risk assessment is at the core of modern economies. Traditionally, it is measured by statistical methods and manual auditing. Recent advances in financial artificial intelligence stemmed from a new wave of machine learning (ML)-driven credit risk models that gained tremendous attention from both industry and academia. In this paper, we systematically review a series of major research contributions (76 papers) over the past eight years using statistical, machine learning and deep learning techniques to address the problems of credit risk. Specifically, we propose a novel classification methodology for ML-driven credit risk algorithms and their performance ranking using public datasets. We further discuss the challenges including data imbalance, dataset inconsistency, model transparency, and inadequate utilization of deep learning models. The results of our review show that: 1) most deep learning models outperform classic machine learning and statistical algorithms in credit risk estimation, and 2) ensemble methods provide higher accuracy compared with single models. Finally, we present summary tables in terms of datasets and proposed models

    AUTOENCODER BASED GENERATOR FOR CREDIT INFORMATION RECOVERY OF RURAL BANKS

    Get PDF
    By using machine learning algorithms, banks and other lending institutions can construct intelligent risk control models for loan businesses, which helps to overcome the disadvantages of traditional evaluation methods, such as low efficiency and excessive reliance on the subjective judgment of auditors. However, in the practical evaluation process, it is inevitable to encounter data with missing credit characteristics. Therefore, filling in the missing characteristics is crucial for the training process of those machine learning algorithms, especially when applied to rural banks with little credit data. In this work, we proposed an autoencoder-based algorithm that can use the correlation between data to restore the missing data items in the features. Also, we selected several open-source datasets (German Credit Data, Give Me Some Credit on the Kaggle platform, etc.) as the training and test dataset to verify the algorithm. The comparison results show that our model outperforms the others, although the performance of the autoencoder-based feature restorer decreases significantly when the feature missing ratio exceeds 70%

    A Comprehensive Survey on Enterprise Financial Risk Analysis: Problems, Methods, Spotlights and Applications

    Full text link
    Enterprise financial risk analysis aims at predicting the enterprises' future financial risk.Due to the wide application, enterprise financial risk analysis has always been a core research issue in finance. Although there are already some valuable and impressive surveys on risk management, these surveys introduce approaches in a relatively isolated way and lack the recent advances in enterprise financial risk analysis. Due to the rapid expansion of the enterprise financial risk analysis, especially from the computer science and big data perspective, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing enterprise financial risk researches, as well as to summarize and interpret the mechanisms and the strategies of enterprise financial risk analysis in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. This paper provides a systematic literature review of over 300 articles published on enterprise risk analysis modelling over a 50-year period, 1968 to 2022. We first introduce the formal definition of enterprise risk as well as the related concepts. Then, we categorized the representative works in terms of risk type and summarized the three aspects of risk analysis. Finally, we compared the analysis methods used to model the enterprise financial risk. Our goal is to clarify current cutting-edge research and its possible future directions to model enterprise risk, aiming to fully understand the mechanisms of enterprise risk communication and influence and its application on corporate governance, financial institution and government regulation

    A credit risk model with small sample data based on G-XGBoost

    Get PDF
    Currently existing credit risk models, e.g., Scoring Card and Extreme Gradient Boosting (XGBoost), usually have requirements for the capacity of modeling samples. The small sample size may result in the adverse outcomes for the trained models which may neither achieve the expected accuracy nor distinguish risks well. On the other hand, data acquisition can be difficult and restricted due to data protection regulations. In view of the above dilemma, this paper applies Generative Adversarial Nets (GAN) to the construction of small and micro enterprises (SMEs) credit risk model, and proposes a novel training method, namely G-XGBoost, based on the XGBoost model. A few batches of real data are selected to train GAN. When the generative network reaches Nash equilibrium, the network is used to generate pseudo data with the same distribution. The pseudo data is then combined with real data to form an amplified sample set. The amplified sample set is used to train XGBoost for credit risk prediction. The feasibility and advantages of the G-XGBoost model are demonstrated by comparing with the XGBoost model

    Data Science for Finance: Targeted Learning from (Big) Data to Economic Stability and Financial Risk Management

    Get PDF
    A thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Information Management, specialization in Statistics and EconometricsThe modelling, measurement, and management of systemic financial stability remains a critical issue in most countries. Policymakers, regulators, and managers depend on complex models for financial stability and risk management. The models are compelled to be robust, realistic, and consistent with all relevant available data. This requires great data disclosure, which is deemed to have the highest quality standards. However, stressed situations, financial crises, and pandemics are the source of many new risks with new requirements such as new data sources and different models. This dissertation aims to show the data quality challenges of high-risk situations such as pandemics or economic crisis and it try to theorize the new machine learning models for predictive and longitudes time series models. In the first study (Chapter Two) we analyzed and compared the quality of official datasets available for COVID-19 as a best practice for a recent high-risk situation with dramatic effects on financial stability. We used comparative statistical analysis to evaluate the accuracy of data collection by a national (Chinese Center for Disease Control and Prevention) and two international (World Health Organization; European Centre for Disease Prevention and Control) organizations based on the value of systematic measurement errors. We combined excel files, text mining techniques, and manual data entries to extract the COVID-19 data from official reports and to generate an accurate profile for comparisons. The findings show noticeable and increasing measurement errors in the three datasets as the pandemic outbreak expanded and more countries contributed data for the official repositories, raising data comparability concerns and pointing to the need for better coordination and harmonized statistical methods. The study offers a COVID-19 combined dataset and dashboard with minimum systematic measurement errors and valuable insights into the potential problems in using databanks without carefully examining the metadata and additional documentation that describe the overall context of data. In the second study (Chapter Three) we discussed credit risk as the most significant source of risk in banking as one of the most important sectors of financial institutions. We proposed a new machine learning approach for online credit scoring which is enough conservative and robust for unstable and high-risk situations. This Chapter is aimed at the case of credit scoring in risk management and presents a novel method to be used for the default prediction of high-risk branches or customers. This study uses the Kruskal-Wallis non-parametric statistic to form a conservative credit-scoring model and to study its impact on modeling performance on the benefit of the credit provider. The findings show that the new credit scoring methodology represents a reasonable coefficient of determination and a very low false-negative rate. It is computationally less expensive with high accuracy with around 18% improvement in Recall/Sensitivity. Because of the recent perspective of continued credit/behavior scoring, our study suggests using this credit score for non-traditional data sources for online loan providers to allow them to study and reveal changes in client behavior over time and choose the reliable unbanked customers, based on their application data. This is the first study that develops an online non-parametric credit scoring system, which can reselect effective features automatically for continued credit evaluation and weigh them out by their level of contribution with a good diagnostic ability. In the third study (Chapter Four) we focus on the financial stability challenges faced by insurance companies and pension schemes when managing systematic (undiversifiable) mortality and longevity risk. For this purpose, we first developed a new ensemble learning strategy for panel time-series forecasting and studied its applications to tracking respiratory disease excess mortality during the COVID-19 pandemic. The layered learning approach is a solution related to ensemble learning to address a given predictive task by different predictive models when direct mapping from inputs to outputs is not accurate. We adopt a layered learning approach to an ensemble learning strategy to solve the predictive tasks with improved predictive performance and take advantage of multiple learning processes into an ensemble model. In this proposed strategy, the appropriate holdout for each model is specified individually. Additionally, the models in the ensemble are selected by a proposed selection approach to be combined dynamically based on their predictive performance. It provides a high-performance ensemble model to automatically cope with the different kinds of time series for each panel member. For the experimental section, we studied more than twelve thousand observations in a portfolio of 61-time series (countries) of reported respiratory disease deaths with monthly sampling frequency to show the amount of improvement in predictive performance. We then compare each country’s forecasts of respiratory disease deaths generated by our model with the corresponding COVID-19 deaths in 2020. The results of this large set of experiments show that the accuracy of the ensemble model is improved noticeably by using different holdouts for different contributed time series methods based on the proposed model selection method. These improved time series models provide us proper forecasting of respiratory disease deaths for each country, exhibiting high correlation (0.94) with Covid-19 deaths in 2020. In the fourth study (Chapter Five) we used the new ensemble learning approach for time series modeling, discussed in the previous Chapter, accompany by K-means clustering for forecasting life tables in COVID-19 times. Stochastic mortality modeling plays a critical role in public pension design, population and public health projections, and in the design, pricing, and risk management of life insurance contracts and longevity-linked securities. There is no general method to forecast the mortality rate applicable to all situations especially for unusual years such as the COVID-19 pandemic. In this Chapter, we investigate the feasibility of using an ensemble of traditional and machine learning time series methods to empower forecasts of age-specific mortality rates for groups of countries that share common longevity trends. We use Generalized Age-Period-Cohort stochastic mortality models to capture age and period effects, apply K-means clustering to time series to group countries following common longevity trends, and use ensemble learning to forecast life expectancy and annuity prices by age and sex. To calibrate models, we use data for 14 European countries from 1960 to 2018. The results show that the ensemble method presents the best robust results overall with minimum RMSE in the presence of structural changes in the shape of time series at the time of COVID-19. In this dissertation’s conclusions (Chapter Six), we provide more detailed insights about the overall contributions of this dissertation on the financial stability and risk management by data science, opportunities, limitations, and avenues for future research about the application of data science in finance and economy

    Using neural networks and support vector machines for default prediction in South Africa

    Get PDF
    A thesis submitted to the Faculty of Computer Science and Applied Mathematics, University of Witwatersrand, in fulfillment of the requirements for the Master of Science (MSc) Johannesburg Feb 2017This is a thesis on credit risk and in particular bankruptcy prediction. It investigates the application of machine learning techniques such as support vector machines and neural networks for this purpose. This is not a thesis on support vector machines and neural networks, it simply looks at using these functions as tools to preform the analysis. Neural networks are a type of machine learning algorithm. They are nonlinear mod- els inspired from biological network of neurons found in the human central nervous system. They involve a cascade of simple nonlinear computations that when aggre- gated can implement robust and complex nonlinear functions. Neural networks can approximate most nonlinear functions, making them a quite powerful class of models. Support vector machines (SVM) are the most recent development from the machine learning community. In machine learning, support vector machines (SVMs) are su- pervised learning algorithms that analyze data and recognize patterns, used for clas- si cation and regression analysis. SVM takes a set of input data and predicts, for each given input, which of two possible classes comprises the input, making the SVM a non-probabilistic binary linear classi er. A support vector machine constructs a hyperplane or set of hyperplanes in a high or in nite dimensional space, which can be used for classi cation into the two di erent data classes. Traditional bankruptcy prediction medelling has been criticised as it makes certain underlying assumptions on the underlying data. For instance, a frequent requirement for multivarate analysis is a joint normal distribution and independence of variables. Support vector machines (and neural networks) are a useful tool for default analysis because they make far fewer assumptions on the underlying data. In this framework support vector machines are used as a classi er to discriminate defaulting and non defaulting companies in a South African context. The input data required is a set of nancial ratios constructed from the company's historic nancial statements. The data is then Divided into the two groups: a company that has defaulted and a company that is healthy (non default). The nal data sample used for this thesis consists of 23 nancial ratios from 67 companies listed on the jse. Furthermore for each company the company's probability of default is predicted. The results are benchmarked against more classical methods that are commonly used for bankruptcy prediction such as linear discriminate analysis and logistic regression. Then the results of the support vector machines, neural networks, linear discriminate analysis and logistic regression are assessed via their receiver operator curves and pro tability ratios to gure out which model is more successful at predicting default.MT 201
    corecore