28 research outputs found

    Artificial neural network for atrial fibrillation identification in portable devices

    Get PDF
    none6siAtrial fibrillation (AF) is a common cardiac disorder that can cause severe complications. AF diagnosis is typically based on the electrocardiogram (ECG) evaluation in hospitals or in clinical facilities. The aim of the present work is to propose a new artificial neural network for reliable AF identification in ECGs acquired through portable devices. A supervised fully connected artificial neural network (RSL_ANN), receiving 19 ECG features (11 morphological, 4 on F waves and 4 on heart-rate variability (HRV)) in input and discriminating between AF and non-AF classes in output, was created using the repeated structuring and learning (RSL) procedure. RSL_ANN was created and tested on 8028 (training: 4493; validation: 1125; testing: 2410) annotated ECGs belonging to the β€œAF Classification from a Short Single Lead ECG Recording” database and acquired with the portable KARDIA device by AliveCor. RSL_ANN performance was evaluated in terms of area under the curve (AUC) and confidence intervals (CIs) of the received operating characteristic. RSL_ANN performance was very good and very similar in training, validation and testing datasets. AUC was 91.1% (CI: 89.1%–93.0%), 90.2% (CI: 86.2%–94.3%) and 90.8% (CI: 88.1%–93.5%) for the training, validation and testing datasets, respectively. Thus, RSL_ANN is a promising tool for reliable identification of AF in ECGs acquired by portable devices.openMarinucci D.; Sbrollini A.; Marcantoni I.; Morettini M.; Swenne C.A.; Burattini L.Marinucci, D.; Sbrollini, A.; Marcantoni, I.; Morettini, M.; Swenne, C. A.; Burattini, L

    ΠžΠ±Π·ΠΎΡ€ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² автоматичСской диагностики сСрдСчной Π°Ρ€ΠΈΡ‚ΠΌΠΈΠΈ для принятия Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΠΎ нСобходимости провСдСния дСфибрилляции

    Get PDF
    Ventricular fibrillation is considered the most common cause of sudden cardiac arrest. The fibrillation, and ventricular tachycardia often preceding it, are cardiac rhythms that may respond to emergency electroshock therapy and return to normal sinus rhythm when diagnosed early after cardiac arrest with the restoration of adequate cardiac pumping function. However, manually checking ECG signals on the existence of a pattern of such arrhythmias is a risky and time-consuming task in stressful situations and practically impossible in the absence of a qualified medical specialist. Therefore, systems of the computer classification of arrhythmias with the function of making a decision on the necessity of electric cardioversion with the parameters of a high-voltage pulse calculated adaptively for each patient are widely used for the automatic diagnosis of such conditions. This paper discusses methods of analyzing the electrocardiographic signal taken from the electrodes of an external automatic or semi-automatic defibrillator in order to make a decision on the necessity for defibrillation, which are applicable in the embedded software of automatic and semiautomatic external defibrillators. The paper includes an overview of applicable filtering techniques as well as subsequent algorithms for extracting, classifying and compressing features for the ECG signal.Β Β Lipchak D. A., Chupov A. A. Methods of Signal Analysis for Automatic Diagnosis of Shockable Cardiac Arrhythmias: A Review. Ural Radio Engineering Journal. 2021;5(4):380–409. (In Russ.) DOI: 10.15826/ urej.2021.5.4.004. Ѐибрилляция ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡ΠΊΠΎΠ² сСрдца считаСтся Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ часто Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‰Π΅ΠΉΡΡ ΠΏΡ€ΠΈΡ‡ΠΈΠ½ΠΎΠΉ Π²Π½Π΅Π·Π°ΠΏΠ½ΠΎΠΉ остановки сСрдца. Вакая фибрилляция ΠΈ часто ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²ΡƒΡŽΡ‰Π°Ρ Π΅ΠΉ ТСлудочковая тахикардия – это Ρ€ΠΈΡ‚ΠΌΡ‹ сСрдца, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Ρ€Π΅Π°Π³ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π½Π° ΡΠΊΡΡ‚Ρ€Π΅Π½Π½ΡƒΡŽ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΡˆΠΎΠΊΠΎΠ²ΡƒΡŽ Ρ‚Π΅Ρ€Π°ΠΏΠΈΡŽ ΠΈ Π²Π΅Ρ€Π½ΡƒΡ‚ΡŒΡΡ ΠΊ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ синусовому Ρ€ΠΈΡ‚ΠΌΡƒ ΠΏΡ€ΠΈ Ρ€Π°Π½Π½Π΅ΠΉ диагностикС послС остановки сСрдца с восстановлСниСм Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½ΠΎΠΉ насосной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ сСрдца. Однако ручная ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° сигналов Π­ΠšΠ“ Π½Π° Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½Π° Ρ‚Π°ΠΊΠΎΠΉ Π°Ρ€ΠΈΡ‚ΠΌΠΈΠΈ являСтся слоТной аналитичСской Π·Π°Π΄Π°Ρ‡Π΅ΠΉ, Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‰Π΅ΠΉ Π½Π΅ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ³ΠΎ принятия Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π² стрСссовой ситуации, практичСски Π½Π΅Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΠΌΠΎΠΉ Π² отсутствиС ΠΊΠ²Π°Π»ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ мСдицинского спСциалиста. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ для автоматичСской диагностики острых состояний ΡˆΠΈΡ€ΠΎΠΊΠΎΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ систСмы ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠΉ классификации Π°Ρ€ΠΈΡ‚ΠΌΠΈΠΉ с Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ принятия Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΎ нСобходимости провСдСния элСктрокардиотСрапии с ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ Π²Ρ‹ΡΠΎΠΊΠΎΠ²ΠΎΠ»ΡŒΡ‚Π½ΠΎΠ³ΠΎ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ°, вычислСнного Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½ΠΎ для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°. Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ рассмотрСны ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Π°Π½Π°Π»ΠΈΠ·Π° элСктрокардиографичСского сигнала, снимаСмого с элСктродов Π½Π°Ρ€ΡƒΠΆΠ½ΠΎΠ³ΠΎ автоматичСского ΠΈΠ»ΠΈ полуавтоматичСского дСфибриллятора, с Ρ†Π΅Π»ΡŒΡŽ принятия Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΎ нСобходимости оказания дСфибрилляции, ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌΡ‹Π΅ Π²ΠΎ встроСнном ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠΌ обСспСчСнии автоматичСских ΠΈ полуавтоматичСских Π²Π½Π΅ΡˆΠ½ΠΈΡ… дСфибрилляторов. Π Π°Π±ΠΎΡ‚Π° Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ ΠΎΠ±Π·ΠΎΡ€ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌΡ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² извлСчСния, классификации ΠΈ сТатия Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² для сигнала Π­ΠšΠ“.Β Β Π›ΠΈΠΏΡ‡Π°ΠΊ Π”. А., Π§ΡƒΠΏΠΎΠ² А. А. ΠžΠ±Π·ΠΎΡ€ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² автоматичСской диагностики сСрдСчной Π°Ρ€ΠΈΡ‚ΠΌΠΈΠΈ для принятия Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΠΎ нСобходимости провСдСния дСфибрилляции. Ural Radio Engineering Journal. 2021;5(4):380–409. DOI: 10.15826/urej.2021.5.4.004.

    A Classification and Prediction Hybrid Model Construction with the IQPSO-SVM Algorithm for Atrial Fibrillation Arrhythmia

    Get PDF
    Atrial fibrillation (AF) is the most common cardiovascular disease (CVD); and most existing algorithms are usually designed for the diagnosis (i.e.; feature classification) or prediction of AF. Artificial intelligence (AI) algorithms integrate the diagnosis of AF electrocardiogram (ECG) and predict the possibility that AF will occur in the future. In this paper; we utilized the MIT-BIH AF Database (AFDB); which is composed of data from normal people and patients with AF and onset characteristics; and the AFPDB database (i.e.; PAF Prediction Challenge Database); which consists of data from patients with Paroxysmal AF (PAF; the records contain the ECG preceding an episode of PAF); and subjects who do not have documented AF. We extracted the respective characteristics of the databases and used them in modeling diagnosis and prediction. In the aspect of model construction; we regarded diagnosis and prediction as two classification problems; adopted the traditional support vector machine (SVM) algorithm; and combined them. The improved quantum particle swarm optimization support vector machine (IQPSO-SVM) algorithm was used to speed the training time. During the verification process; the clinical FZU-FPH database created by Fuzhou University and Fujian Provincial Hospital was used for hybrid model testing. The data were obtained from the Holter monitor of the hospital and encrypted. We proposed an algorithm for transforming the PDF ECG waveform images of hospital examination reports into digital data. For the diagnosis model and prediction model trained using the training set of the AFDB and AFPDB databases; the sensitivity; specificity; and accuracy measures were 99.2% and 99.2%; 99.2% and 93.3%; and 91.7% and 92.5% for the test set of the AFDB and AFPDB databases; respectively. Moreover; the sensitivity; specificity; and accuracy were 94.2%; 79.7%; and 87.0%; respectively; when tested using the FZU-FPH database with 138 samples of the ECG composed of two labels. The composite classification and prediction model using a new water-fall ensemble method had a total accuracy of approximately 91% for the test set of the FZU-FPH database with 80 samples with 120 segments of ECG with three labels

    Methods of Signal Analysis for Automatic Diagnosis of Shockable Cardiac Arrhythmias: A Review

    Full text link
    ΠŸΠΎΡΡ‚ΡƒΠΏΠΈΠ»Π°: 19.12.2021. ΠŸΡ€ΠΈΠ½ΡΡ‚Π° Π² ΠΏΠ΅Ρ‡Π°Ρ‚ΡŒ: 18.01.2022.Received: 19.12.2021. Accepted: 18.01.2022.Ѐибрилляция ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡ΠΊΠΎΠ² сСрдца считаСтся Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ часто Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‰Π΅ΠΉΡΡ ΠΏΡ€ΠΈΡ‡ΠΈΠ½ΠΎΠΉ Π²Π½Π΅Π·Π°ΠΏΠ½ΠΎΠΉ остановки сСрдца. Вакая фибрилляция ΠΈ часто ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²ΡƒΡŽΡ‰Π°Ρ Π΅ΠΉ ТСлудочковая тахикардия – это Ρ€ΠΈΡ‚ΠΌΡ‹ сСрдца, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Ρ€Π΅Π°Π³ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π½Π° ΡΠΊΡΡ‚Ρ€Π΅Π½Π½ΡƒΡŽ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΡˆΠΎΠΊΠΎΠ²ΡƒΡŽ Ρ‚Π΅Ρ€Π°ΠΏΠΈΡŽ ΠΈ Π²Π΅Ρ€Π½ΡƒΡ‚ΡŒΡΡ ΠΊ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ синусовому Ρ€ΠΈΡ‚ΠΌΡƒ ΠΏΡ€ΠΈ Ρ€Π°Π½Π½Π΅ΠΉ диагностикС послС остановки сСрдца с восстановлСниСм Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½ΠΎΠΉ насосной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ сСрдца. Однако ручная ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° сигналов Π­ΠšΠ“ Π½Π° Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½Π° Ρ‚Π°ΠΊΠΎΠΉ Π°Ρ€ΠΈΡ‚ΠΌΠΈΠΈ являСтся слоТной аналитичСской Π·Π°Π΄Π°Ρ‡Π΅ΠΉ, Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‰Π΅ΠΉ Π½Π΅ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ³ΠΎ принятия Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π² стрСссовой ситуации, практичСски Π½Π΅Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΠΌΠΎΠΉ Π² отсутствиС ΠΊΠ²Π°Π»ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ мСдицинского спСциалиста. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ для автоматичСской диагностики острых состояний ΡˆΠΈΡ€ΠΎΠΊΠΎΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ систСмы ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠΉ классификации Π°Ρ€ΠΈΡ‚ΠΌΠΈΠΉ с Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ принятия Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΎ нСобходимости провСдСния элСктрокардиотСрапии с ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ Π²Ρ‹ΡΠΎΠΊΠΎΠ²ΠΎΠ»ΡŒΡ‚Π½ΠΎΠ³ΠΎ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ°, вычислСнного Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½ΠΎ для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°. Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ рассмотрСны ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Π°Π½Π°Π»ΠΈΠ·Π° элСктрокардиографичСского сигнала, снимаСмого с элСктродов Π½Π°Ρ€ΡƒΠΆΠ½ΠΎΠ³ΠΎ автоматичСского ΠΈΠ»ΠΈ полуавтоматичСского дСфибриллятора, с Ρ†Π΅Π»ΡŒΡŽ принятия Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΎ нСобходимости оказания дСфибрилляции, ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌΡ‹Π΅ Π²ΠΎ встроСнном ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠΌ обСспСчСнии автоматичСских ΠΈ полуавтоматичСских Π²Π½Π΅ΡˆΠ½ΠΈΡ… дСфибрилляторов. Π Π°Π±ΠΎΡ‚Π° Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ ΠΎΠ±Π·ΠΎΡ€ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌΡ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² извлСчСния, классификации ΠΈ сТатия Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² для сигнала Π­ΠšΠ“.Ventricular fibrillation is considered the most common cause of sudden cardiac arrest. The fibrillation, and ventricular tachycardia often preceding it, are cardiac rhythms that may respond to emergency electroshock therapy and return to normal sinus rhythm when diagnosed early after cardiac arrest with the restoration of adequate cardiac pumping function. However, manually checking ECG signals on the existence of a pattern of such arrhythmias is a risky and time-consuming task in stressful situations and practically impossible in the absence of a qualified medical specialist. Therefore, systems of the computer classification of arrhythmias with the function of making a decision on the necessity of electric cardioversion with the parameters of a high-voltage pulse calculated adaptively for each patient are widely used for the automatic diagnosis of such conditions. This paper discusses methods of analyzing the electrocardiographic signal taken from the electrodes of an external automatic or semi-automatic defibrillator in order to make a decision on the necessity for defibrillation, which are applicable in the embedded software of automatic and semiautomatic external defibrillators. The paper includes an overview of applicable filtering techniques as well as subsequent algorithms for extracting, classifying and compressing features for the ECG signal

    Over-fitting suppression training strategies for deep learning-based atrial fibrillation detection

    Get PDF
    Nowadays, deep learning-based models have been widely developed for atrial fibrillation (AF) detection in electrocardiogram (ECG) signals. However, owing to the inevitable over-fitting problem, classification accuracy of the developed models severely differed when applying on the independent test datasets. This situation is more significant for AF detection from dynamic ECGs. In this study, we explored two potential training strategies to address the over-fitting problem in AF detection. The first one is to use the Fast Fourier transform (FFT) and Hanning-window-based filter to suppress the influence from individual difference. Another is to train the model on the wearable ECG data to improve the robustness of model. Wearable ECG data from 29 patients with arrhythmia were collected for at least 24 h. To verify the effectiveness of the training strategies, a Long Short-Term Memory (LSTM) and Convolution Neural Network (CNN)-based model was proposed and tested. We tested the model on the independent wearable ECG data set, as well as the MIT-BIH Atrial Fibrillation database and PhysioNet/Computing in Cardiology Challenge 2017 database. The model achieved 96.23%, 95.44%, and 95.28% accuracy rates on the three databases, respectively. Pertaining to the comparison of the accuracy rates on each training set, the accuracy of the model trained in conjunction with the proposed training strategies only reduced by 2%, while the accuracy of the model trained without the training strategies decreased by approximately 15%. Therefore, the proposed training strategies serve as effective mechanisms for devising a robust AF detector and significantly enhanced the detection accuracy rates of the resulting deep networks

    Noninvasive Dynamic Characterization of Swallowing Kinematics and Impairments in High Resolution Cervical Auscultation via Deep Learning

    Get PDF
    Swallowing is a complex sensorimotor activity by which food and liquids are transferred from the oral cavity to the stomach. Swallowing requires the coordination between multiple subsystems which makes it subject to impairment secondary to a variety of medical or surgically related conditions. Dysphagia refers to any swallowing disorder and is common in patients with head and neck cancer and neurological conditions such as stroke. Dysphagia affects nearly 9 million adults and causes death for more than 60,000 yearly in the US. In this research, we utilize advanced signal processing techniques with sensor technology and deep learning methods to develop a noninvasive and widely available tool for the evaluation and diagnosis of swallowing problems. We investigate the use of modern spectral estimation methods in addition to convolutional recurrent neural networks to demarcate and localize the important swallowing physiological events that contribute to airway protection solely based on signals collected from non-invasive sensors attached to the anterior neck. These events include the full swallowing activity, upper esophageal sphincter opening duration and maximal opening diameter, and aspiration. We believe that combining sensor technology and state of the art deep learning architectures specialized in time series analysis, will help achieve great advances for dysphagia detection and management in terms of non-invasiveness, portability, and availability. Like never before, such advances will enable patients to get continuous feedback about their swallowing out of standard clinical care setting which will extremely facilitate their daily activities and enhance the quality of their lives

    Cardiovascular Disorder Detection with a PSO-Optimized Bi-LSTM Recurrent Neural Network Model

    Get PDF
    The medical community is facing ever-increasing difficulties in identifying and treating cardiovascular diseases. The World Health Organization (WHO) reports that despite the availability of numerous high-priced medical remedies for persons with heart problems, CVDs continue to be the main cause of mortality globally, accounting for over 21 million deaths annually. When cardiovascular diseases are identified and treated early on, they cause far fewer deaths. Deep learning models have facilitated automated diagnostic methods for early detection of these diseases. Cardiovascular diseases often present insidious symptoms that are difficult to identify in a timely manner. Prompt diagnosis of individuals with CVD and related conditions, such as high blood pressure or high cholesterol, is crucial to initiate appropriate treatment. Recurrent neural networks (RNNs) with gated recurrent units (GRUs) have recently emerged as a more advanced variant, capable of surpassing Long Short-Term Memory (LSTM) models in several applications. When compared to LSTMs, GRUs have the advantages of faster calculation and less memory usage. When it comes to CVD prediction, the bio-inspired Particle Swarm Optimization (PSO) algorithm provides a straightforward method of getting the best possible outcomes with minimal effort. This stochastic optimization method requires neither the gradient nor any differentiated form of the objective function and emulates the behaviour and intelligence of swarms. PSO employs a swarm of agents, called particles, that navigate the search space to find the best prediction type.This study primarily focuses on predicting cardiovascular diseases using effective feature selection and classification methods. For CVD forecasting, we offer a GRU model built on recurrent neural networks and optimized with particle swarms (RNN-GRU-PSO). We find that the proposed model significantly outperforms the state-of-the-art models (98.2% accuracy in predicting cardiovascular diseases) in a head-to-head comparison
    corecore