638 research outputs found

    Lagrangian FE methods for coupled problems in fluid mechanics

    Get PDF
    This work aims at developing formulations and algorithms where maximum advantage of using Lagrangian finite element fluid formulations can be taken. In particular we concentrate our attention at fluid-structure interaction and thermally coupled applications, most of which originate from practical “real-life” problems. Two fundamental options are investigated - coupling two Lagrangian formulations (e.g. Lagrangian fluid and Lagrangian structure) and coupling the Lagrangian and Eulerian fluid formulations. In the first part of this work the basic concepts of the Lagrangian fluids, the so-called Particle Finite Element Method (PFEM) [1], [2] are presented. These include nodal variable storage, mesh re-construction using Delaunay triangulation/tetrahedralization and alpha shape-based method for identification of the computational domain boundaries. This shall serve as a general basis for all the further developments of this work.Postprint (published version

    Lagrangian FE methods for coupled problems in fluid mechanics

    Get PDF
    Lagrangian finite element methods emerged in fluid dynamics when the deficiencies of the Eulerian methods in treating free surface flows (or generally domains undergoing large shape deformations) were faced. Their advantage relies upon natural tracking of boundaries and interfaces, a feature particularly important for interaction problems. Another attractive feature is the absence of the convective term in the fluid momentum equations written in the Lagrangian framework resulting in a symmetric discrete system matrix, an important feature in case iterative solvers are utilized. Unfortunately, the lack of the control over the mesh distortions is a major drawback of Lagrangian methods. In order to overcome this, a Lagrangian method must be equipped with an efficient re-meshing tool. This work aims at developing formulations and algorithms where maximum advantage of using Lagrangian finite element fluid formulations can be taken. In particular we concentrate our attention at fluid-structure interaction and thermally coupled applications, most of which originate from practical “real-life” problems. Two fundamental options are investigated - coupling two Lagrangian formulations (e.g. Lagrangian fluid and Lagrangian structure) and coupling the Lagrangian and Eulerian fluid formulations. In the first part of this work the basic concepts of the Lagrangian fluids, the so-called Particle Finite Element Method (PFEM) [1], [2] are presented. These include nodal variable storage, mesh re-construction using Delaunay triangulation/tetrahedralization and alpha shape-based method for identification of the computational domain boundaries. This shall serve as a general basis for all the further developments of this work. Next we show how an incompressible Lagrangian fluid can be used in a partitioned fluid-structure interaction context. We present an improved Dirichlet-Neumann strategy for coupling the incompressible Lagrangian fluid with a rigid body. This is finally applied to an industrial problem dealing with the sea-landing of a satellite capsule. In the following, an extension of the method is proposed to allow dealing with fluid-structure problems involving general flexible structures. The method developed takes advantage of the symmetry of the discrete system matrix and by introducing a slight fluid compressibility allows to treat the fluid-structure interaction problem efficiently in a monolithic way. Thus, maximum benefit from using a similar description for both the fluid (updated Lagrangian) and the solid (total Lagrangian) is taken. We show next that the developed monolithic approach is particularly useful for modeling the interaction with light-weight structures. The validation of the method is done by means of comparison with experimental results and with a number of different methods found in literature. The second part of this work aims at coupling Lagrangian and Eulerian fluid formulations. The application area is the modeling of polymers under fire conditions. This kind of problem consists of modeling the two subsystems (namely the polymer and the surrounding air) and their thermomechanical interaction. A compressible fluid formulation based on the Eulerian description is used for modeling the air, whereas a Lagrangian description is used for the polymer. For the surrounding air we develop a model based upon the compressible Navier-Stokes equations. Such choice is dictated by the presence of high temperature gradients in the problem of interest, which precludes the utilization of the Boussinesq approximation. The formulation is restricted to the sub-sonic flow regime, meeting the requirement of the problem of interest. The mechanical interaction of the subsystems is modeled by means of a one-way coupling, where the polymer velocities are imposed on the interface elements of the Eulerian mesh in a weak way. Thermal interaction is treated by means of the energy equation solved on the Eulerian mesh, containing thermal properties of both the subsystems, namely air and polymer. The developments of the second part of this work do not pretend to be by any means exhaustive; for instance, radiation and chemical reaction phenomena are not considered. Rather we make the first step in the direction of modeling the complicated thermo-mechanical problem and provide a general framework that in the future can be enriched with a more detailed and sophisticated models. However this would affect only the individual modules, preserving the overall architecture of the solution procedure unchanged. Each chapter concludes with the example section that includes both the validation tests and/or applications to the real-life problems. The final chapter highlights the achievements of the work and defines the future lines of research that naturally evolve from the results of this work

    Partitioned time discretization for atmosphere-ocean interaction

    Get PDF
    Numerical algorithms are proposed, analyzed and tested for improved efficiency and reliabil-ity of the dynamic core of climate codes. The commonly used rigid lid hypothesis is assumed,which allows instantaneous response of the interface to changes in mass. Additionally, mois-ture transport is ignored, resulting in a static interface. A central algorithmic feature is thenumerical decoupling of the atmosphere and ocean calculations by a semi-implicit treatmentof the interface data, i.e. partitioned time stepping. Algorithms are developed for simpli-fied continuum models retaining the key mathematical structure of the atmosphere-oceanequations. The work begins by studying linear parameterization of momentum flux in terms of windshear, coupling the equations. Partitioned variants of backward-Euler are developed allowinglarge time steps. Higher order accuracy is achieved by deferred correction. Adaptations aredeveloped for nonlinear coupling. Most notably an application of geometric averaging isused to retain unconditional stability. This algorithm is extended to allow different size timesteps for the subcalculations. Full numerical analyses are performed and computationalexperiments are provided. Next, heat convection is added including a nonlinear parameterization of heat flux interms of wind shear and temperature. A partitioned algorithm is developed for the atmo-sphere and ocean coupled velocity-temperature system that retains unconditional stability.Furthermore, uncertainty quantification is performed in this case due to the importance ofreliably calculating heat transport phenomena in climate modeling. Noise is introduced in two coupling parameters with an important role in stability. Numerical tests investigate thevariance in temperature, velocity and average surface temperature. Partitioned methods are highly efficient for linearly coupled 2 fluid problems. Exten-sions of these methods for nonlinear coupling where the interface data is processed properlybefore passing yield highly efficient algorithms. One reason is due to their strong stabilityproperties. Convergence also holds under time step restrictions not dependent on mesh size.It is observed that two-way coupling (requiring knowledge of both atmosphere and oceanvelocities on the interface) generates less uncertainty in the calculation of average surfacetemperature compared to one-way models (only requiring knowledge of the wind velocity)

    HIGHER ACCURACY METHODS FOR FLUID FLOWS IN VARIOUS APPLICATIONS: THEORY AND IMPLEMENTATION

    Get PDF
    This dissertation contains research on several topics related to Defect-deferred correction (DDC) method applying to CFD problems. First, we want to improve the error due to temporal discretization for the problem of two convection dominated convection-diffusion problems, coupled across a joint interface. This serves as a step towards investigating an atmosphere-ocean coupling problem with the interface condition that allows for the exchange of energies between the domains. The main diffuculty is to decouple the problem in an unconditionally stable way for using legacy code for subdomains. To overcome the issue, we apply the Deferred Correction (DC) method. The DC method computes two successive approximations and we will exploit this extra flexibility by also introducing the artificial viscosity to resolve the low viscosity issue. The low viscosity issue is to lose an accuracy and a way of finding a approximate solution as a diffusion coeffiscient gets low. Even though that reduces the accuracy of the first approximation, we recover the second order accuracy in the correction step. Overall, we construct a defect and deferred correction (DDC) method. So that not only the second order accuracy in time and space is obtained but the method is also applicable to flows with low viscosity. Upon successfully completing the project in Chapter 1, we move on to implementing similar ideas for a fluid-fluid interaction problem with nonlinear interface condition; the results of this endeavor are reported in Chapter 2. In the third chapter, we represent a way of using an algorithm of an existing penalty-projection for MagnetoHydroDynamics, which allows for the usage of the less sophisticated and more computationally attractive Taylor-Hood pair of finite element spaces. We numerically show that the new modification of the method allows to get first order accuracy in time on the Taylor-Hood finite elements while the existing method would fail on it. In the fourth chapter, we apply the DC method to the magnetohydrodynamic (MHD) system written in Elsásser variables to get second order accuracy in time. We propose and analyze an algorithm based on the penalty projection with graddiv stabilized Taylor Hood solutions of Elsásser formulations

    Stabilized finite element formulations for the three-field viscoelastic fluid flow problem

    Get PDF
    The Finite Element Method (FEM) is a powerful numerical tool, that permits the resolution of problems defined by partial differential equations, very often employed to deal with the numerical simulation of multiphysics problems. In this work, we use it to approximate numerically the viscoelastic fluid flow problem, which involves the resolution of the standard Navier-Stokes equations for velocity and pressure, and another tensorial reactive-convective constitutive equation for the elastic part of the stress, that describes the viscoelastic nature of the fluid. The three-field (velocity-pressure-stress) mixed formulation of the incompressible Navier-Stokes problem, either in the elastic and in the non-elastic case, can lead to two different types of numerical instabilities. The first is associated with the incompressibility and loss of stability of the stress field, and the second with the dominant convection. The first type of instabilities can be overcome by choosing an interpolation for the unknowns that satisfies the two inf-sup conditions that restrict the mixed problem, whereas the dominant convection requires a stabilized formulation in any case. In this work, different stabilized schemes of the Sub-Grid-Scale (SGS) type are proposed to solve the three-field problem, first for quasi Newtonian fluids and then for solving the viscoelastic case. The proposed methods allow one to use equal interpolation for the problem unknowns and to stabilize dominant convective terms both in the momentum and in the constitutive equation. Starting from a residual based formulation used in the quasi-Newtonian case, a non-residual based formulation is proposed in the viscoelastic case which is shown to have superior behavior when there are numerical or geometrical singularities. The stabilized finite element formulations presented in the work yield a global stable solution, however, if the solution presents very high gradients, local oscillations may still remain. In order to alleviate these local instabilities, a general discontinuity-capturing technique for the elastic stress is also proposed. The monolithic resolution of the three-field viscoelastic problem could be extremely expensive computationally, particularly, in the threedimensional case with ten degrees of freedom per node. A fractional step approach motivated in the classical pressure segregation algorithms used in the two-field Navier-Stokes problem is presented in the work.The algorithms designed allow one the resolution of the system of equations that define the problem in a fully decoupled manner, reducing in this way the CPU time and memory requirements with respect to the monolithic case. The numerical simulation of moving interfaces involved in two-fluid flow problems is an important topic in many industrial processes and physical situations. If we solve the problem using a fixed mesh approach, when the interface between both fluids cuts an element, the discontinuity in the material properties leads to discontinuities in the gradients of the unknowns which cannot be captured using a standard finite element interpolation. The method presented in this work features a local enrichment for the pressure unknowns which allows one to capture pressure gradient discontinuities in fluids presenting different density values. The stability and convergence of the non-residual formulation used for viscoelastic fluids is analyzed in the last part of the work, for a linearized stationary case of the Oseen type and for the semi-discrete time dependent non-linear case. In both cases, it is shown that the formulation is stable and optimally convergent under suitable regularity assumptions.El Método de los Elementos Finitos (MEF) es una herramienta numérica de gran alcance, que permite la resolución de problemas definidos por ecuaciones diferenciales parciales, comúnmente utilizado para llevar a cabo simulaciones numéricas de problemas de multifísica. En este trabajo, se utiliza para aproximar numéricamente el problema del flujo de fluidos viscoelásticos, el cual requiere la resolución de las ecuaciones básicas de Navier-Stokes y otra ecuación adicional constitutiva tensorial de tipo reactiva-convectiva, que describe la naturaleza viscoelástica del fluido. La formulación mixta de tres campos (velocidad-presión-tensión) del problema de Navier-Stokes, tanto en el caso elástico como en el no-elástico, puede conducir a dos tipos de inestabilidades numéricas. El primer grupo, se asocia con la incompresibilidad del fluido y la pérdida de estabilidad del campo de tensiones, y el segundo con la convección dominante. El primer tipo de inestabilidades, se puede solucionar eligiendo un tipo de interpolación entre las incógnitas que satisfaga las dos condiciones inf-sup que restringen el problema mixto, mientras que la convección dominante requiere del uso de formulaciones estabilizadas en cualquier caso. En el trabajo, se proponen diferentes esquemas estabilizados del tipo SGS (Sub-Grid-Scales) para resolver el problema de tres campos, primero para fluidos del tipo cuasi-newtonianos y luego para resolver el caso viscoelástico. Los métodos estabilizados propuestos permiten el uso de igual interpolación entre las incógnitas del problema y estabilizan la convección dominante, tanto en la ecuación de momento como en la ecuación constitutiva. Comenzando desde una formulación de tipo residual usada en el caso cuasi-newtoniano, se propone una formulación no-residual para el caso viscoelástico que muestra un comportamiento superior en presencia de singularidades numéricas y geométricas. En general, una formulación estabilizada produce una solución estable global, sin embargo, si la solución presenta gradientes elevados, oscilaciones locales se pueden mantener. Con el objetivo de aliviar este tipo de inestabilidades locales, se propone adicionalmente una técnica general de captura de discontinuidades para la tensión elástica. La resolución monolítica del problema de tres campos viscoelástico puede llegar a ser extremadamente costosa computacionalmente, sobre todo, en el caso tridimensional donde se tienen diez grados de libertad por nodo. Un enfoque de paso fraccionado motivado en los algorítmos clásicos de segregación de la presión usados en el caso del problema de dos campos de Navier-Stokes, se presenta en el trabajo, el cual permite la resolución del sistema de ecuaciones que definen el problema de una manera completamente desacoplada, lo que reduce los tiempos de cálculo y los requerimientos de memoria, respecto al caso monolítico. La simulación numérica de interfaces móviles que envuelve los problemas de dos fluidos, es un tópico importante en un gran número de procesos industriales y situaciones físicas. Si se resuelve el problema utilizando un enfoque de mallas fijas, cuando la interfaz que separa los dos fluidos corta un elemento, la discontinuidad en las propiedades materiales da lugar a discontinuidades en los gradientes de las incógnitas que no pueden ser capturados utilizando una formulación estándar de interpolación. Un enriquecimiento local para la presión se presenta en el trabajo, el cual permite la captura de gradientes discontinuos en la presión, asociados a fluidos de diferentes densidades. La estabilidad y la convergencia de la formulación no-residual utilizada para fluidos viscoelásticos es analizada en la última parte del trabajo, para un caso linealizado estacionario del tipo Oseen y para un problema transitorio no-lineal semi-discreto. En ambos casos, se logra mostrar que la formulación es estable y de convergencia óptima bajo supuestos de regularidad adecuados.Postprint (published version

    An unconditionally stable algorithm for generalized thermoelasticity based on operator-splitting and time-discontinuous Galerkin finite element methods

    Get PDF
    An efficient time-stepping algorithm is proposed based on operator-splitting and the space–time discontinuous Galerkin finite element method for problems in the non-classical theory of thermoelasticity. The non-classical theory incorporates three models: the classical theory based on Fourier’s law of heat conduction resulting in a hyperbolic–parabolic coupled system, a non-classical theory of a fully-hyperbolic extension, and a combination of the two. The general problem is split into two contractive sub-problems, namely the mechanical phase and the thermal phase. Each sub-problem is discretized using the space–time discontinuous Galerkin finite element method. The sub-problems are stable which then leads to unconditional stability of the global product algorithm. A number of numerical examples are presented to demonstrate the performance and capability of the method

    An efficient split-step framework for non-Newtonian incompressible flow problems with consistent pressure boundary conditions

    Get PDF
    Incompressible flow problems with nonlinear viscosity, as they often appear in biomedical and industrial applications, impose several numerical challenges related to regularity requirements, boundary conditions, matrix preconditioning, among other aspects. In particular, standard split-step or projection schemes decoupling velocity and pressure are not as efficient for generalised Newtonian fluids, since the additional terms due to the non-zero viscosity gradient couple all velocity components again. Moreover, classical pressure correction methods are not consistent with the non-Newtonian setting, which can cause numerical artifacts such as spurious pressure boundary layers. Although consistent reformulations have been recently developed, the additional projection steps needed for the viscous stress tensor incur considerable computational overhead. In this work, we present a new time-splitting framework that handles such important issues, leading to an efficient and accurate numerical tool. Two key factors for achieving this are an appropriate explicit–implicit treatment of the viscous and convective nonlinearities, as well as the derivation of a pressure Poisson problem with fully consistent boundary conditions and finite-element-suitable regularity requirements. We present first- and higher-order stepping schemes tailored for this purpose, as well as various numerical examples showcasing the stability, accuracy and efficiency of the proposed framework

    An algebraic multigrid method for Q2Q1Q_2-Q_1 mixed discretizations of the Navier-Stokes equations

    Full text link
    Algebraic multigrid (AMG) preconditioners are considered for discretized systems of partial differential equations (PDEs) where unknowns associated with different physical quantities are not necessarily co-located at mesh points. Specifically, we investigate a Q2Q1Q_2-Q_1 mixed finite element discretization of the incompressible Navier-Stokes equations where the number of velocity nodes is much greater than the number of pressure nodes. Consequently, some velocity degrees-of-freedom (dofs) are defined at spatial locations where there are no corresponding pressure dofs. Thus, AMG approaches leveraging this co-located structure are not applicable. This paper instead proposes an automatic AMG coarsening that mimics certain pressure/velocity dof relationships of the Q2Q1Q_2-Q_1 discretization. The main idea is to first automatically define coarse pressures in a somewhat standard AMG fashion and then to carefully (but automatically) choose coarse velocity unknowns so that the spatial location relationship between pressure and velocity dofs resembles that on the finest grid. To define coefficients within the inter-grid transfers, an energy minimization AMG (EMIN-AMG) is utilized. EMIN-AMG is not tied to specific coarsening schemes and grid transfer sparsity patterns, and so it is applicable to the proposed coarsening. Numerical results highlighting solver performance are given on Stokes and incompressible Navier-Stokes problems.Comment: Submitted to a journa
    corecore