63 research outputs found

    Track Layouts of Graphs

    Full text link
    A \emph{(k,t)(k,t)-track layout} of a graph GG consists of a (proper) vertex tt-colouring of GG, a total order of each vertex colour class, and a (non-proper) edge kk-colouring such that between each pair of colour classes no two monochromatic edges cross. This structure has recently arisen in the study of three-dimensional graph drawings. This paper presents the beginnings of a theory of track layouts. First we determine the maximum number of edges in a (k,t)(k,t)-track layout, and show how to colour the edges given fixed linear orderings of the vertex colour classes. We then describe methods for the manipulation of track layouts. For example, we show how to decrease the number of edge colours in a track layout at the expense of increasing the number of tracks, and vice versa. We then study the relationship between track layouts and other models of graph layout, namely stack and queue layouts, and geometric thickness. One of our principle results is that the queue-number and track-number of a graph are tied, in the sense that one is bounded by a function of the other. As corollaries we prove that acyclic chromatic number is bounded by both queue-number and stack-number. Finally we consider track layouts of planar graphs. While it is an open problem whether planar graphs have bounded track-number, we prove bounds on the track-number of outerplanar graphs, and give the best known lower bound on the track-number of planar graphs.Comment: The paper is submitted for publication. Preliminary draft appeared as Technical Report TR-2003-07, School of Computer Science, Carleton University, Ottawa, Canad

    Generalized Colorings of Graphs

    Get PDF
    A graph coloring is an assignment of labels called “colors” to certain elements of a graph subject to certain constraints. The proper vertex coloring is the most common type of graph coloring, where each vertex of a graph is assigned one color such that no two adjacent vertices share the same color, with the objective of minimizing the number of colors used. One can obtain various generalizations of the proper vertex coloring problem, by strengthening or relaxing the constraints or changing the objective. We study several types of such generalizations in this thesis. Series-parallel graphs are multigraphs that have no K4-minor. We provide bounds on their fractional and circular chromatic numbers and the defective version of these pa-rameters. In particular we show that the fractional chromatic number of any series-parallel graph of odd girth k is exactly 2k/(k − 1), confirming a conjecture by Wang and Yu. We introduce a generalization of defective coloring: each vertex of a graph is assigned a fraction of each color, with the total amount of colors at each vertex summing to 1. We define the fractional defect of a vertex v to be the sum of the overlaps with each neighbor of v, and the fractional defect of the graph to be the maximum of the defects over all vertices. We provide results on the minimum fractional defect of 2-colorings of some graphs. We also propose some open questions and conjectures. Given a (not necessarily proper) vertex coloring of a graph, a subgraph is called rainbow if all its vertices receive different colors, and monochromatic if all its vertices receive the same color. We consider several types of coloring here: a no-rainbow-F coloring of G is a coloring of the vertices of G without rainbow subgraph isomorphic to F ; an F -WORM coloring of G is a coloring of the vertices of G without rainbow or monochromatic subgraph isomorphic to F ; an (M, R)-WORM coloring of G is a coloring of the vertices of G with neither a monochromatic subgraph isomorphic to M nor a rainbow subgraph isomorphic to R. We present some results on these concepts especially with regards to the existence of colorings, complexity, and optimization within certain graph classes. Our focus is on the case that F , M or R is a path, cycle, star, or clique

    Threshold-coloring and unit-cube contact representation of planar graphs

    Full text link
    In this paper we study threshold-coloring of graphs, where the vertex colors represented by integers are used to describe any spanning subgraph of the given graph as follows. A pair of vertices with a small difference in their colors implies that the edge between them is present, while a pair of vertices with a big color difference implies that the edge is absent. Not all planar graphs are threshold-colorable, but several subclasses, such as trees, some planar grids, and planar graphs with no short cycles can always be threshold-colored. Using these results we obtain unit-cube contact representation of several subclasses of planar graphs. Variants of the threshold-coloring problem are related to well-known graph coloring and other graph-theoretic problems. Using these relations we show the NP-completeness for two of these variants, and describe a polynomial-time algorithm for another. © 2015 Elsevier B.V

    Interval Edge-Colorings of Graphs

    Get PDF
    A proper edge-coloring of a graph G by positive integers is called an interval edge-coloring if the colors assigned to the edges incident to any vertex in G are consecutive (i.e., those colors form an interval of integers). The notion of interval edge-colorings was first introduced by Asratian and Kamalian in 1987, motivated by the problem of finding compact school timetables. In 1992, Hansen described another scenario using interval edge-colorings to schedule parent-teacher conferences so that every person\u27s conferences occur in consecutive slots. A solution exists if and only if the bipartite graph with vertices for parents and teachers, and edges for the required meetings, has an interval edge-coloring. A well-known result of Vizing states that for any simple graph G, χ0(G) ≤ ∆(G)+1, where χ0(G) and ∆(G) denote the edge-chromatic number and maximum degree of G, respectively. A graph G is called class 1 if χ0(G) = ∆(G), and class 2 if χ0(G) = ∆(G) + 1. One can see that any graph admitting an interval edge-coloring must be of class 1, and thus every graph of class 2 does not have such a coloring. Finding an interval edge-coloring of a given graph is hard. In fact, it has been shown that determining whether a bipartite graph has an interval edge-coloring is NP-complete. In this thesis, we survey known results on interval edge-colorings of graphs, with a focus on the progress of (a, b)-biregular bipartite graphs. Discussion of related topics and future work is included at the end. We also give a new proof of Theorem 3.15 on the existence of proper path factors of (3, 4)-biregular graphs. Finally, we obtain a new result, Theorem 3.18, which states that if a proper path factor of any (3, 4)-biregular graph has no path of length 8, then it contains paths of length 6 only. The new result we obtained and the method we developed in the proof of Theorem 3.15 might be helpful in attacking the open problems mentioned in the Future Work section of Chapter 5

    Games on graphs, visibility representations, and graph colorings

    Get PDF
    In this thesis we study combinatorial games on graphs and some graph parameters whose consideration was inspired by an interest in the symmetry of hypercubes. A capacity function f on a graph G assigns a nonnegative integer to each vertex of V(G). An f-matching in G is a set M ⊆ E(G) such that the number of edges of M incident to v is at most f(v) for all v ⊆ V(G). In the f-matching game on a graph G, denoted (G,f), players Max and Min alternately choose edges of G to build an f-matching; the game ends when the chosen edges form a maximal f-matching. Max wants the final f-matching to be large; Min wants it to be small. The f-matching number is the size of the final f-matching under optimal play. We extend to the f-matching game a lower bound due to Cranston et al. on the game matching number. We also consider a directed version of the f-matching game on a graph G. Peg Solitaire is a game on connected graphs introduced by Beeler and Hoilman. In the game, pegs are placed on all but one vertex. If x, y, and z form a 3-vertex path and x and y each have a peg but z does not, then we can remove the pegs at x and y and place a peg at z; this is called a jump. The goal of the Peg Solitaire game on graphs is to find jumps that reduce the number of pegs on the graph to 1. Beeler and Rodriguez proposed a variant where we want to maximize the number of pegs remaining when no more jumps can be made. Maximizing over all initial locations of a single hole, the maximum number of pegs left on a graph G when no jumps remain is the Fool's Solitaire number F(G). We determine the Fool's Solitaire number for the join of any graphs G and H. For the cartesian product, we determine F(G ◻ K_k) when k ≥ 3 and G is connected. Finally, we give conditions on graphs G and H that imply F(G ◻ H) ≥ F(G) F(H). A t-bar visibility representation of a graph G assigns each vertex a set that is the union of at most t horizontal segments ("bars") in the plane so that vertices are adjacent if and only if there is an unobstructed vertical line of sight (having positive width) joining the sets assigned to them. The visibility number of a graph G, written b(G), is the least t such that G has a t-bar visibility representation. Let Q_n denote the n-dimensional hypercube. A simple application of Euler's Formula yields b(Q_n) ≥ ⌈(n+1)/4⌉. To prove that equality holds, we decompose Q_{4k-1} explicitly into k spanning subgraphs whose components have the form C_4 ◻ P_{2^l}. The visibility number b(D) of a digraph D is the least t such that D can be represented by assigning each vertex at most t horizontal bars in the plane so that uv ∈ E(D) if and only if there is an unobstructed vertical line of sight (with positive width) joining some bar for u to some higher bar for v. It is known that b(D) ≤ 2 for every outerplanar digraph. We give a characterization of outerplanar digraphs with b(D)=1. A proper vertex coloring of a graph G is r-dynamic if for each v ∈ V (G), at least min{r, d(v)} colors appear in N_G(v). We investigate r-dynamic versions of coloring and list coloring. We give upper bounds on the minimum number of colors needed for any r in terms of the genus of the graph. Two vertices of Q_n are antipodal if they differ in every coordinate. Two edges uv and xy are antipodal if u is antipodal to x and v is antipodal to y. An antipodal edge-coloring of Q_n is a 2-coloring of the edges in which antipodal edges have different colors. DeVos and Norine conjectured that for n ≥ 2, in every antipodal edge-coloring of Q_n there is a pair of antipodal vertices connected by a monochromatic path. Previously this was shown for n ≤ 5. Here we extend this result to n = 6. Hovey introduced A-cordial labelings as a simultaneous generalization of cordial and harmonious labelings. If S is an abelian group, then a labeling f: V(G) → A of the vertices of a graph G induces an edge-labeling on G; the edge uv receives the label f(u) + f(v). A graph G isA-cordial if there is a vertex-labeling such that (1) the vertex label classes differ in size by at most 1, and (2) the induced edge label classes differ in size by at most 1. The smallest non-cyclic group is V_4 (also known as Z_2×Z_2). We investigate V_4-cordiality of many families of graphs, namely complete bipartite graphs, paths, cycles, ladders, prisms, and hypercubes. Finally, we introduce a generalization of A-cordiality involving digraphs and quasigroups, and we show that there are infinitely many Q-cordial digraphs for every quasigroup Q

    Vers des réseaux optiques efficaces et tolérants aux pannes : complexité et algorithmes

    Get PDF
    We study in this thesis optimization problems with application in optical networks. The problems we consider are related to fault-tolerance and efficient resource allocation and the results we obtain are mainly related to the computational complexity of these problems. The first part of this thesis is devoted to finding paths and disjoint paths. Finding a path is crucial in all types of networks in order to set up connections and finding disjoint paths is a common approach used to provide some degree of protection against failures in networks. We study these problems under different settings. We first focus on finding paths and node or link-disjoint paths in networks with asymmetric nodes, which are nodes with restrictions on their internal connectivity. Afterwards, we consider networks with star Shared Risk Link Groups (SRLGs) which are groups of links that might fail simultaneously due to a localized event. In these networks, we investigate the problem of finding SRLG-disjoint paths. The second part of this thesis focuses on the problem of Routing and Spectrum Assignment (RSA) in Elastic Optical Networks (EONs). EONs are proposed as the new generation of optical networks and they aim at an efficient and flexible use of the optical resources. RSA is the key problem in EONs and it deals with allocating resources to requests under multiple constraints. We first study the static version of RSA in tree networks. Afterwards, we examine a dynamic version of RSA in which a non-disruptive spectrum defragmentation technique is used. Finally, we present in the appendix another problem that has been studied during this thesis.Nous étudions dans cette thèse des problèmes d’optimisation avec applications dans les réseaux optiques. Les problèmes étudiés sont liés à la tolérance aux pannes et à l’utilisation efficace des ressources. Les résultats obtenus portent principalement sur la complexité de calcul de ces problèmes. La première partie de cette thèse est consacrée aux problèmes de trouver des chemins et des chemins disjoints. La recherche d’un chemin est essentielle dans tout type de réseaux afin d’y établir des connexions et la recherche de chemins disjoints est souvent utilisée pour garantir un certain niveau de protection contre les pannes dans les réseaux. Nous étudions ces problèmes dans des contextes différents. Nous traitons d’abord les problèmes de trouver un chemin et des chemins lien ou nœud- disjoints dans des réseaux avec nœuds asymétriques, c’est-à-dire des nœuds avec restrictions sur leur connectivité interne. Ensuite, nous considérons les réseaux avec des groupes de liens partageant un risque (SRLG) en étoile : ensembles de liens qui peuvent tomber en panne en même temps suite à un événement local. Dans ce type de réseaux, nous examinons le problème de recherche des chemins SRLG-disjoints. La deuxième partie de cette thèse est consacrée au problème de routage et d’allocation de spectre (RSA) dans les réseaux optiques élastiques (EONs). Les EONs sont proposés comme la nouvelle génération des réseaux optiques et ils visent une utilisation plus efficace et flexible des ressources optiques. Le problème RSA est central dans les EONs. Il concerne l’allocation de ressources aux requêtes sous plusieurs contraintes

    Graph Theory

    Get PDF
    Graph theory is a rapidly developing area of mathematics. Recent years have seen the development of deep theories, and the increasing importance of methods from other parts of mathematics. The workshop on Graph Theory brought together together a broad range of researchers to discuss some of the major new developments. There were three central themes, each of which has seen striking recent progress: the structure of graphs with forbidden subgraphs; graph minor theory; and applications of the entropy compression method. The workshop featured major talks on current work in these areas, as well as presentations of recent breakthroughs and connections to other areas. There was a particularly exciting selection of longer talks, including presentations on the structure of graphs with forbidden induced subgraphs, embedding simply connected 2-complexes in 3-space, and an announcement of the solution of the well-known Oberwolfach Problem
    corecore