7 research outputs found

    Decomposition of discrete-time open tandem queues with Poisson arrivals and general service times

    Get PDF
    In der Grobplanungsphase vernetzter Logistik- und Produktionssysteme ist man häufig daran interessiert, mit geringem Berechnungsaufwand eine zufriedenstellende Approximation der Leistungskennzahlen des Systems zu bestimmen. Hierbei bietet die Modellierung mittels zeitdiskreter Methoden gegenüber der zeitkontinuierlichen Modellierung den Vorteil, dass die gesamte Wahrscheinlichkeitsverteilung der Leistungskenngrößen berechnet werden kann. Da Produktions- und Logistiksysteme in der Regel so konzipiert sind, dass sie die Leistung nicht im Durchschnitt, sondern mit einer bestimmten Wahrscheinlichkeit (z.B. 95%) zusichern, können zeitdiskrete Warteschlangenmodelle detailliertere Informationen über die Leistung des Systems (wie z.B. der Warte- oder Durchlaufzeit) liefern. Für die Analyse vernetzter zeitdiskreter Bediensysteme sind Dekompositionsmethoden häufig der einzig praktikable und recheneffiziente Ansatz, um stationäre Leistungsmaße in den einzelnen Bediensystemen zu berechnen. Hierbei wird das Netzwerk in die einzelnen Knoten zerlegt und diese getrennt voneinander analysiert. Der Ansatz basiert auf der Annahme, dass der Punktprozess des Abgangsstroms stromaufwärts liegender Stationen durch einen Erneuerungsprozess approximiert werden kann, und so eine unabhängige Analyse der Bediensysteme möglich ist. Die Annahme der Unabhängigkeit ermöglicht zwar eine effiziente Berechnung, führt jedoch zu teilweise starken Approximationsfehlern in den berechneten Leistungskenngrößen. Der Untersuchungsgegenstand dieser Arbeit sind offene zeitdiskrete Tandem-Netzwerke mit Poisson-verteilten Ankünften am stromaufwärts liegenden Bediensystem und generell verteilten Bedienzeiten. Das Netzwerk besteht folglich aus einem stromaufwärts liegenden M/G/1-Bediensystem und einem stromabwärts liegenden G/G/1-System. Diese Arbeit verfolgt drei Ziele, (1) die Defizite des Dekompositionsansatzes aufzuzeigen und dessen Approximationsgüte mittels statistischer Schätzmethoden zu bestimmen, (2) die Autokorrelation des Abgangsprozesses des M/G/1-Systems zu modellieren um die Ursache des Approximationsfehlers erklären zu können und (3) einen Dekompositionsansatz zu entwickeln, der die Abhängigkeit des Abgangsstroms berücksichtigt und so beliebig genaue Annäherungen der Leistungskenngrößen ermöglicht. Im ersten Teil der Arbeit wird die Approximationsgüte des Dekompositionsverfahrens am stromabwärts liegenden G/G/1-Bediensystem mit Hilfe von Linearer Regression (Punktschätzung) und Quantilsregression (Intervallschätzung) bestimmt. Beide Schätzverfahren werden jeweils auf die relativen Fehler des Erwartungswerts und des 95%-Quantils der Wartezeit im Vergleich zu den simulierten Ergebnissen berechnet. Als signifikante Einflussfaktoren auf die Approximationsgüte werden die Auslastung des Systems und die Variabilität des Ankunftsstroms identifiziert. Der zweite Teil der Arbeit fokussiert sich auf die Berechnung der Autokorrelation im Abgangsstroms des M/G/1-Bediensystems. Aufeinanderfolgende Zwischenabgangszeiten sind miteinander korreliert, da die Abgangszeit eines Kunden von dem Systemzustand abhängt, den der vorherige Kunde bei dessen Abgang zurückgelassen hat. Die Autokorrelation ist ursächlich für den Dekompositionsfehler, da die Ankunftszeiten am stromabwärts liegenden Bediensystem nicht unabhängig identisch verteilt sind. Im dritten Teil der Arbeit wird ein neuer Dekompositionsansatz vorgestellt, der die Abhängigkeit im Abgangsstroms des M/G/1-Systems mittels eines semi-Markov Prozesses modelliert. Um eine explosionsartige Zunahme des Zustandsraums zu verhindern, wird ein Verfahren eingeführt, das den Zustandsraum der eingebetteten Markov-Kette beschränkt. Numerischen Auswertungen zeigen, dass die mit stark limitierten Zustandsraum erzielten Ergebnisse eine bessere Approximation bieten als der bisherige Dekompositionsansatz. Mit zunehmender Größe des Zustandsraums konvergieren die Leistungskennzahlen beliebig genau

    Nested Fork-Join Queuing Networks and Their Application to Mobility Airfield Operations Analysis

    Get PDF
    A single-chain nested fork-join queuing network (FJQN) model of mobility airfield ground processing is proposed. In order to analyze the queuing network model, advances on two fronts are made. First, a general technique for decomposing nested FJQNs with probabilistic forks is proposed, which consists of incorporating feedback loops into the embedded Markov chain of the synchronization station, then using Marie\u27s Method to decompose the network. Numerical studies show this strategy to be effective, with less than two percent relative error in the approximate performance measures in most realistic cases. The second contribution is the identification of a quick, efficient method for solving for the stationary probabilities of the λn/Ck/r/N queue. Unpreconditioned Conjugate Gradient Squared is shown to be the method of choice in the context of decomposition using Marie\u27s Method, thus broadening the class of networks where the method is of practical use. The mobility airfield model is analyzed using the strategies described above, and accurate approximations of airfield performance measures are obtained in a fraction of the time needed for a simulation study. The proposed airfield modeling approach is especially effective for quick-look studies and sensitivity analysis

    Analytical Approximations to Predict Performance Measures of Manufacturing Systems with Job Failures and Parallel Processing

    Get PDF
    Parallel processing is prevalent in many manufacturing and service systems. Many manufactured products are built and assembled from several components fabricated in parallel lines. An example of this manufacturing system configuration is observed at a manufacturing facility equipped to assemble and test web servers. Characteristics of a typical web server assembly line are: multiple products, job circulation, and paralleling processing. The primary objective of this research was to develop analytical approximations to predict performance measures of manufacturing systems with job failures and parallel processing. The analytical formulations extend previous queueing models used in assembly manufacturing systems in that they can handle serial and different configurations of paralleling processing with multiple product classes, and job circulation due to random part failures. In addition, appropriate correction terms via regression analysis were added to the approximations in order to minimize the gap in the error between the analytical approximation and the simulation models. Markovian and general type manufacturing systems, with multiple product classes, job circulation due to failures, and fork and join systems to model parallel processing were studied. In the Markovian and general case, the approximations without correction terms performed quite well for one and two product problem instances. However, it was observed that the flow time error increased as the number of products and net traffic intensity increased. Therefore, correction terms for single and fork-join stations were developed via regression analysis to deal with more than two products. The numerical comparisons showed that the approximations perform remarkably well when the corrections factors were used in the approximations. In general, the average flow time error was reduced from 38.19% to 5.59% in the Markovian case, and from 26.39% to 7.23% in the general case. All the equations stated in the analytical formulations were implemented as a set of Matlab scripts. By using this set, operations managers of web server assembly lines, manufacturing or other service systems with similar characteristics can estimate different system performance measures, and make judicious decisions - especially setting delivery due dates, capacity planning, and bottleneck mitigation, among others

    Fuelling the zero-emissions road freight of the future: routing of mobile fuellers

    Get PDF
    The future of zero-emissions road freight is closely tied to the sufficient availability of new and clean fuel options such as electricity and Hydrogen. In goods distribution using Electric Commercial Vehicles (ECVs) and Hydrogen Fuel Cell Vehicles (HFCVs) a major challenge in the transition period would pertain to their limited autonomy and scarce and unevenly distributed refuelling stations. One viable solution to facilitate and speed up the adoption of ECVs/HFCVs by logistics, however, is to get the fuel to the point where it is needed (instead of diverting the route of delivery vehicles to refuelling stations) using "Mobile Fuellers (MFs)". These are mobile battery swapping/recharging vans or mobile Hydrogen fuellers that can travel to a running ECV/HFCV to provide the fuel they require to complete their delivery routes at a rendezvous time and space. In this presentation, new vehicle routing models will be presented for a third party company that provides MF services. In the proposed problem variant, the MF provider company receives routing plans of multiple customer companies and has to design routes for a fleet of capacitated MFs that have to synchronise their routes with the running vehicles to deliver the required amount of fuel on-the-fly. This presentation will discuss and compare several mathematical models based on different business models and collaborative logistics scenarios
    corecore