8 research outputs found

    Valuation of financial derivatives through transmutation operator methods

    Get PDF
    Nowadays there is a fast development of the methods based on transmutation operators (TO) theory for solving differential equations. The possibility to construct the images of solutions for TO in certain cases allowed the construction of accurate numerical solutions to several problems that appear in different applied fields. In the present work, for the first time, it is shown that these methods can be effectively applied to the optimal stopping problems that appear in mathematical finance. The first part of the thesis (Chapter 2) consists of an application of the method to the valuation of European-style double-barrier knock-out options (DBKO). This is done by using the efficient computation of eigenvalues for the Shrodinger equation and a representation of solutions in terms of Neumann series of Bessel functions. This knowledge was used in the construction of a novel analytically tractable method for pricing (and hedging) DBKO, which can be applied to the whole class of one-dimensional timehomogeneous diffusions even for the cases where the corresponding transition density is not known. The proposed numerical method is shown to be efficient and simple to implement. To illustrate the flexibility and computational power of the algorithm it is constructed an extended jump to default model that is able to capture several empirical regularities commonly observed in the literature. The second part of the thesis (Chapters 3 and 4) is dedicated to the study of the more complicated problems: the free boundary problems. For this purpose, the method was first (in some certain sense) generalized and tested on the Stefan-like problem. The method consists in efficiently constructing a complete system of solutions for parabolic equation from known solutions for the heat equation, heat polynomials (HP). This way it was possible to extend the numerical method that existed only for the heat equation to the large class of parabolic equations. However, for the selected financial problem, Russian option with finite horizon (ROFH), the numerical computation from the method based on HP revealed to be non-efficient. This is due to the more complex structure of the problem, specifically the non-consistent boundary conditions. Hence, it was developed another variation of the method that uses different systems of solutions for the heat equation: the generalized exponential basis. The constructed method proved to be accurate, relatively easy to implement and can it can be applied to the large class of the free boundary problems. The value of the ROFH has been an important theme of discussion in the last decades. The application of the method to this problem confirmed several results that have appeared recently in the literature and shred some light on the differences that were present.The constructed methods have a large scope of applications not only in financial field, but also in other disciplines. Both studies also open a variety of future research and applications that are discussed in the text.Actualmente estamos a assistir a um rápido desenvolvimento de métodos baseados nos operadores de transmutação (OT) para a resolução de equações diferenciais. Em certos casos, é possível calcular as imagens de soluções para OT, o que permite construir soluções numéricas com um elevado grau de precisão para diversos problemas aplicados. No presente trabalho, pela primeira vez, e desenvolvida e ilustrada uma aplicação eficiente destes métodos aos problemas de paragem óptima que surgem na matemática financeira. A primeira parte da tese (Capítulo 2) consiste na aplicação do método ao problema de avaliação de opção com dupla barreira "knock-out" (DBKO) de estilo europeu. A construção do método passa por um apurado cálculo de valores próprios do respectivo problema de Schrodinger e a representação de soluções em termos de séries de Neumann de funções de Bessel. Esse conhecimento foi utilizado para construir um novo método de expressão analítica para definição de preço (e cobertura) de DBKO. O método pode ser aplicado a toda uma classe de difusões uni-dimensionais homogéneas no tempo, mesmo para os casos em que não é conhecida a função de densidade de transição. Neste capítulo é demonstrado que o método proposto é eficiente e simples de implementar. Para ilustrar a flexibilidade e a robustez computacional do respectivo algoritmo é construído um modelo estendido de salto para o incumprimento que oferece a possibilidade de captar certos efeitos empíricos presentes na literatura. A segunda parte da tese (Capítulos 3 e 4) e dedicada ao estudo de problemas mais complexos: problemas de fronteira livre. Para esse propósito, o método foi (em certo sentido) generalizado e testado no problema do tipo de Stefan. O método consiste numa construção eficiente de um sistema completo de soluções para uma equação diferencial parabólica a partir de um sistema completo de soluções para a equação de calor, os polinómios de calor (PC). Deste modo, foi possível estender o método numérico que existia apenas para equação de calor para uma larga classe de equações parabólicas. No entanto, para o problema financeiro seleccionado, a opção russa com horizonte finito (ORHF), o método baseado nos PCs revelou-se computacionalmente ineficiente. Isso deve-se a uma estrutura mais complicada do problema, nomeadamente as não-consistentes condições de fronteira. Como tal, foi desenvolvida uma outra variação do método que usa um sistema de soluções diferente de PCs: uma base exponencial generalizada. O método construído provou ser preciso, de relativamente fácil implementação e pode ser aplicado a uma larga classe de problemas de fronteira livre. O valor de ORHF foi e continua a ser um importante tema de discussão nas últimas décadas. A aplicação do método a esse problema confirmou vários resultados que surgiram recentemente na literatura e revelou o porque de algumas diferenças. Os métodos construídos têm uma larga gama de aplicações, tanto no âmbito de matemática financeira como em outras disciplinas. Ambos os estudos abrem várias possibilidades para futuras investigações e aplicações, as discussões das quais se encontram no texto

    Applications of Laplace transform for evaluating occupation time options and other derivatives

    Get PDF
    The present thesis provides an analysis of possible applications of the Laplace Transform (LT) technique to several pricing problems. In Finance this technique has received very little attention and for this reason, in the first chapter we illustrate with several examples why the use of the LT can considerably simplify the pricing problem. Observed that the analytical inversion is very often difficult or requires the computation of very complicated expressions, we illustrate also how the numerical inversion is remarkably easy to understand and perform and can be done with high accuracy and at very low computational cost. In the second and third chapters we investigate the problem of pricing corridor derivatives, i.e. exotic contracts for which the payoff at maturity depends on the time of permanence of an index inside a band (corridor) or below a given level (hurdle). The index is usually an exchange or interest rate. This kind of bond has evidenced a good popularity in recent years as alternative instruments to common bonds for short term investment and as opportunity for investors believing in stable markets (corridor bonds) or in non appreciating markets (hurdle bonds). In the second chapter, assuming a Geometric Brownian dynamics for the underlying asset and solving the relevant Feynman-Kac equation, we obtain an expression for the Laplace transform of the characteristic function of the occupation time. We then show how to use a multidimensional numerical inversion for obtaining the density function. In the third chapter, we investigate the effect of discrete monitoring on the price of corridor derivatives and, as already observed in the literature for barrier options and for lookback options, we observe substantial differences between discrete and continuous monitoring. The pricing problem with discrete monitoring is based on an appropriate numerical scheme of the system of PDE's. In the fourth chapter we propose a new approximation for pricing Asian options based on the logarithmic moments of the price average

    On accurate and efficient valuation of financial contracts under models with jumps

    Get PDF
    The aim of this thesis is to develop efficient valuation methods for nancial contracts under models with jumps and stochastic volatility, and to present their rigorous mathematical underpinning. For efficient risk management, large books of exotic options need to be priced and hedged under models that are exible enough to describe the observed option prices at speeds close to real time. To do so, hundreds of vanilla options, which are quoted in terms of implied volatility, need to be calibrated to market prices quickly and accurately on a regular basis. With this in mind we develop efficient methods for the evaluation of (i) vanilla options, (ii) implied volatility and (iii) common path-dependent options. Firstly, we derive a new numerical method for the classical problem of pricing vanilla options quickly in time-changed Brownian motion models. The method is based on ra- tional function approximations of the Black-Scholes formula. Detailed numerical results are given for a number of widely used models. In particular, we use the variance-gamma model, the CGMY model and the Heston model without correlation to illustrate our results. Comparison to the standard fast Fourier option pricing method with respect to speed appears to favour our newly developed method in the cases considered. Secondly, we use this method to derive a procedure to compute, for a given set of arbitrage-free European call option prices, the corresponding Black-Scholes implied volatility surface. In order to achieve this, rational function approximations of the inverse of the Black-Scholes formula are used. We are thus able to work out implied volatilities more efficiently than is possible using other common methods. Error estimates are presented for a wide range of parameters. Thirdly, we develop a new Monte Carlo variance reduction method to estimate the expectations of path-dependent functionals, such as first-passage times and occupation times, under a class of stochastic volatility models with jumps. The method is based on a recursive approximation of the rst-passage time probabilities and expected oc- cupation times of Levy bridge processes that relies in part on a randomisation of the time- parameter. We derive the explicit form of the recursive approximation in the case of bridge processes corresponding to the class of Levy processes with mixed-exponential jumps, and present a highly accurate numerical realisation. This class includes the linear Brownian motion, Kou's double-exponential jump-di usion model and the hyper-exponential jump- difusion model, and it is dense in the class of all Levy processes. We determine the rate of convergence of the randomisation method and con rm it numerically. Subsequently, we combine the randomisation method with a continuous Euler-Maruyama scheme to es- timate path-functionals under stochastic volatility models with jumps. Compared with standard Monte Carlo methods, we nd that the method is signi cantly more efficient. To illustrate the efficiency of the method, it is applied to the valuation of range accruals and barrier options.Open Acces

    A decomposition approach via Fourier sine transform for valuing American knock-out options with rebates

    Get PDF
    We present an innovative decomposition approach for computing the price and the hedging parameters of American knock-out options with a time-dependent rebate. Our approach is built upon: (i) the Fourier sine transform applied to the partial differential equation with a finite time-dependent spatial domain that governs the option price, and (ii) the decomposition technique that partitions the price of the option into that of the European counterpart and an early exercise premium. Our analytic representations can generalize a number of existing decomposition formulas for some European-style and American-style options. A complexity analysis of the method, together with numerical results, show that the proposed approach is significantly more efficient than the state-of-the-art adaptive finite difference methods, especially in dealing with spot prices near the barrier. Numerical results are also examined in order to provide new insight into the significant effects of the rebate on the option price, the hedging parameters, and the optimal exercise boundary

    High dimensional American options

    Get PDF
    Pricing single asset American options is a hard problem in mathematical finance. There are no closed form solutions available (apart from in the case of the perpetual option), so many approximations and numerical techniques have been developed. Pricing multi–asset (high dimensional) American options is still more difficult. We extend the method proposed theoretically by Glasserman and Yu (2004) by employing regression basis functions that are martingales under geometric Brownian motion. This results in more accurate Monte Carlo simulations, and computationally cheap lower and upper bounds to the American option price. We have implemented these models in QuantLib, the open–source derivatives pricing library. The code for many of the models discussed in this thesis can be downloaded from quantlib.org as part of a practical pricing and risk management library. We propose a new type of multi–asset option, the “Radial Barrier Option” for which we find analytic solutions. This is a barrier style option that pays out when a barrier, which is a function of the assets and their correlations, is hit. This is a useful benchmark test case for Monte Carlo simulations and may be of use in approximating multi–asset American options. We use Laplace transforms in this analysis which can be applied to give analytic results for the hitting times of Bessel processes. We investigate the asymptotic solution of the single asset Black–Scholes–Merton equation in the case of low volatility. This analysis explains the success of some American option approximations, and has the potential to be extended to basket options

    The drivers of Corporate Social Responsibility in the supply chain. A case study.

    Get PDF
    Purpose: The paper studies the way in which a SME integrates CSR into its corporate strategy, the practices it puts in place and how its CSR strategies reflect on its suppliers and customers relations. Methodology/Research limitations: A qualitative case study methodology is used. The use of a single case study limits the generalizing capacity of these findings. Findings: The entrepreneur’s ethical beliefs and value system play a fundamental role in shaping sustainable corporate strategy. Furthermore, the type of competitive strategy selected based on innovation, quality and responsibility clearly emerges both in terms of well defined management procedures and supply chain relations as a whole aimed at involving partners in the process of sustainable innovation. Originality/value: The paper presents a SME that has devised an original innovative business model. The study pivots on the issues of innovation and eco-sustainability in a context of drivers for CRS and business ethics. These values are considered fundamental at International level; the United Nations has declared 2011 the “International Year of Forestry”

    Factors Influencing Customer Satisfaction towards E-shopping in Malaysia

    Get PDF
    Online shopping or e-shopping has changed the world of business and quite a few people have decided to work with these features. What their primary concerns precisely and the responses from the globalisation are the competency of incorporation while doing their businesses. E-shopping has also increased substantially in Malaysia in recent years. The rapid increase in the e-commerce industry in Malaysia has created the demand to emphasize on how to increase customer satisfaction while operating in the e-retailing environment. It is very important that customers are satisfied with the website, or else, they would not return. Therefore, a crucial fact to look into is that companies must ensure that their customers are satisfied with their purchases that are really essential from the ecommerce’s point of view. With is in mind, this study aimed at investigating customer satisfaction towards e-shopping in Malaysia. A total of 400 questionnaires were distributed among students randomly selected from various public and private universities located within Klang valley area. Total 369 questionnaires were returned, out of which 341 questionnaires were found usable for further analysis. Finally, SEM was employed to test the hypotheses. This study found that customer satisfaction towards e-shopping in Malaysia is to a great extent influenced by ease of use, trust, design of the website, online security and e-service quality. Finally, recommendations and future study direction is provided. Keywords: E-shopping, Customer satisfaction, Trust, Online security, E-service quality, Malaysia
    corecore