747 research outputs found

    A decomposition approach for commodity pickup and delivery with time-windows under uncertainty

    Get PDF
    We consider a special class of large-scale, network-based, resource allocation problems under uncertainty, namely that of multi-commodity flows with time-windows under uncertainty. In this class, we focus on problems involving commodity pickup and delivery with time-windows. Our work examines methods of proactive planning, that is, robust plan generation to protect against future uncertainty. By a priori modeling uncertainties in data corresponding to service times, resource availability, supplies and demands, we generate solutions that are more robust operationally, that is, more likely to be executed or easier to repair when disrupted. We propose a novel modeling and solution framework involving a decomposition scheme that separates problems into a routing master problem and Scheduling Sub-Problems; and iterates to find the optimal solution. Uncertainty is captured in part by the master problem and in part by the Scheduling Sub-Problem. We present proof-of-concept for our approach using real data involving routing and scheduling for a large shipment carrierโ€™s ground network, and demonstrate the improved robustness of solutions from our approach

    Consistent Time Window Assignments for Stochastic Multi-Depot Multi-Commodity Pickup and Delivery

    Get PDF
    In this paper, we present the problem of assigning consistent time windows for the collection of multiple fresh products from local farmers and delivering them to distribution centers for consolidation and further distribution in a short agri-food supply chain with stochastic demand. We formulate the problem as a two-stage stochastic program. In the first stage, the time windows are assigned from a set of discrete time windows to farmers and in the second stage, after the demand is realized, the collection routes are planned by solving yet a newly introduced multi-depot multi-commodity team orienteering problem with soft time windows. The objective is to minimize the overall travel time and the time window violations. To solve our problem, we design a (heuristic) progressive hedging algorithm to decompose the deterministic equivalent problem into subproblems for a sampled set of demand scenarios and guide the scenarios toward consensus time windows. Through numerical experiments, we show the value of considering demand uncertainty over solving the deterministic expected value problem and the superiority of our approach over benchmarks when it comes to reducing the routing cost as well as the inconvenience for farmers

    Shared Mobility Optimization in Large Scale Transportation Networks: Methodology and Applications

    Get PDF
    abstract: Optimization of on-demand transportation systems and ride-sharing services involves solving a class of complex vehicle routing problems with pickup and delivery with time windows (VRPPDTW). Previous research has made a number of important contributions to the challenging pickup and delivery problem along different formulation or solution approaches. However, there are a number of modeling and algorithmic challenges for a large-scale deployment of a vehicle routing and scheduling algorithm, especially for regional networks with various road capacity and traffic delay constraints on freeway bottlenecks and signal timing on urban streets. The main thrust of this research is constructing hyper-networks to implicitly impose complicated constraints of a vehicle routing problem (VRP) into the model within the network construction. This research introduces a new methodology based on hyper-networks to solve the very important vehicle routing problem for the case of generic ride-sharing problem. Then, the idea of hyper-networks is applied for (1) solving the pickup and delivery problem with synchronized transfers, (2) computing resource hyper-prisms for sustainable transportation planning in the field of time-geography, and (3) providing an integrated framework that fully captures the interactions between supply and demand dimensions of travel to model the implications of advanced technologies and mobility services on traveler behavior.Dissertation/ThesisDoctoral Dissertation Civil, Environmental and Sustainable Engineering 201

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    The multi-vehicle profitable pick up and delivery routing problem with uncertain travel times

    Get PDF
    Abstract This paper addresses a variant of the known selective pickup and delivery problem with time windows. In this problem, a fleet composed of several vehicles with a given capacity should satisfy a set of customers requests consisting in transporting goods from a supplier (pickup location) to a customer (delivery location). The selective aspect consists in choosing the customers to be served on the basis of the profit collected for the service. Motivated by urban settings, wherein road congestion is an important issue, in this paper, we address the profitable pickup and delivery problem with time windows with uncertain travel times. The problem under this assumption, becomes much more involved. The goal is to find the solution that maximizes the net profit, expressed as the difference between the collected revenue, the route cost and the cost associated to the violation the time windows. This study introduces the problem and develops a solution approach to solve it. Very preliminary tests are performed in order to show the efficiency of developed method to cope with the problem at hand

    ์‹ค์‹œ๊ฐ„ ๋™์  ๊ณ„ํš๋ฒ• ๋ฐ ๊ฐ•ํ™”ํ•™์Šต ๊ธฐ๋ฐ˜์˜ ๊ณต๊ณต์ž์ „๊ฑฐ ์‹œ์Šคํ…œ์˜ ๋™์  ์žฌ๋ฐฐ์น˜ ์ „๋žต

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ฑด์„คํ™˜๊ฒฝ๊ณตํ•™๋ถ€, 2020. 8. ๊ณ ์Šน์˜.The public bicycle sharing system is one of the modes of transportation that can help to relieve several urban problems, such as traffic congestion and air pollution. Because users can pick up and return bicycles anytime and anywhere a station is located, pickup or return failure can occur due to the spatiotemporal imbalances in demand. To prevent system failures, the operator should establish an appropriate repositioning strategy. As the operator makes a decision based on the predicted demand information, the accuracy of forecasting demand is an essential factor. Due to the stochastic nature of demand, however, the occurrence of prediction errors is inevitable. This study develops a stochastic dynamic model that minimizes unmet demand for rebalancing public bicycle sharing systems, taking into account the stochastic demand and the dynamic characteristics of the system. Since the repositioning mechanism corresponds to the sequential decision-making problem, this study applies the Markov decision process to the problem. To solve the Markov decision process, a dynamic programming method, which decomposes complex problems into simple subproblems to derive an exact solution. However, as a set of states and actions of the Markov decision process become more extensive, the computational complexity increases and it is intractable to derive solutions. An approximate dynamic programming method is introduced to derive an approximate solution. Further, a reinforcement learning model is applied to obtain a feasible solution in a large-scale public bicycle network. It is assumed that the predicted demand is derived from the random forest, which is a kind of machine learning technique, and that the observed demand occurred along the Poisson distribution whose mean is the predicted demand to simulate the uncertainty of the future demand. Total unmet demand is used as a key performance indicator in this study. In this study, a repositioning strategy that quickly responds to the prediction error, which means the difference between the observed demand and the predicted demand, is developed and the effectiveness is assessed. Strategies developed in previous studies or applied in the field are also modeled and compared with the results to verify the effectiveness of the strategy. Besides, the effects of various safety buffers and safety stock are examined and appropriate strategies are suggested for each situation. As a result of the analysis, the repositioning effect by the developed strategy was improved compared to the benchmark strategies. In particular, the effect of a strategy focusing on stations with high prediction errors is similar to the effect of a strategy considering all stations, but the computation time can be further reduced. Through this study, the utilization and reliability of the public bicycle system can be improved through the efficient operation without expanding the infrastructure.๊ณต๊ณต์ž์ „๊ฑฐ ์‹œ์Šคํ…œ์€ ๊ตํ†ตํ˜ผ์žก๊ณผ ๋Œ€๊ธฐ์˜ค์—ผ ๋“ฑ ์—ฌ๋Ÿฌ ๋„์‹œ๋ฌธ์ œ๋ฅผ ์™„ํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ๊ตํ†ต์ˆ˜๋‹จ์ด๋‹ค. ๋Œ€์—ฌ์†Œ๊ฐ€ ์œ„์น˜ํ•œ ๊ณณ์ด๋ฉด ์–ธ์ œ ์–ด๋””์„œ๋“  ์ด์šฉ์ž๊ฐ€ ์ž์ „๊ฑฐ๋ฅผ ์ด์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์‹œ์Šคํ…œ์˜ ํŠน์„ฑ์ƒ ์ˆ˜์š”์˜ ์‹œ๊ณต๊ฐ„์  ๋ถˆ๊ท ํ˜•์œผ๋กœ ์ธํ•ด ๋Œ€์—ฌ ์‹คํŒจ ๋˜๋Š” ๋ฐ˜๋‚ฉ ์‹คํŒจ๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. ์‹œ์Šคํ…œ ์‹คํŒจ๋ฅผ ์˜ˆ๋ฐฉํ•˜๊ธฐ ์œ„ํ•ด ์šด์˜์ž๋Š” ์ ์ ˆํ•œ ์žฌ๋ฐฐ์น˜ ์ „๋žต์„ ์ˆ˜๋ฆฝํ•ด์•ผ ํ•œ๋‹ค. ์šด์˜์ž๋Š” ์˜ˆ์ธก ์ˆ˜์š” ์ •๋ณด๋ฅผ ์ „์ œ๋กœ ์˜์‚ฌ๊ฒฐ์ •์„ ํ•˜๋ฏ€๋กœ ์ˆ˜์š”์˜ˆ์ธก์˜ ์ •ํ™•์„ฑ์ด ์ค‘์š”ํ•œ ์š”์†Œ์ด๋‚˜, ์ˆ˜์š”์˜ ๋ถˆํ™•์‹ค์„ฑ์œผ๋กœ ์ธํ•ด ์˜ˆ์ธก ์˜ค์ฐจ์˜ ๋ฐœ์ƒ์ด ๋ถˆ๊ฐ€ํ”ผํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์€ ๊ณต๊ณต์ž์ „๊ฑฐ ์ˆ˜์š”์˜ ๋ถˆํ™•์‹ค์„ฑ๊ณผ ์‹œ์Šคํ…œ์˜ ๋™์  ํŠน์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ ๋ถˆ๋งŒ์กฑ ์ˆ˜์š”๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ์žฌ๋ฐฐ์น˜ ๋ชจํ˜•์„ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๊ณต๊ณต์ž์ „๊ฑฐ ์žฌ๋ฐฐ์น˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ์ˆœ์ฐจ์  ์˜์‚ฌ๊ฒฐ์ • ๋ฌธ์ œ์— ํ•ด๋‹นํ•˜๋ฏ€๋กœ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ˆœ์ฐจ์  ์˜์‚ฌ๊ฒฐ์ • ๋ฌธ์ œ๋ฅผ ๋ชจํ˜•ํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ๋งˆ๋ฅด์ฝ”ํ”„ ๊ฒฐ์ • ๊ณผ์ •์„ ์ ์šฉํ•œ๋‹ค. ๋งˆ๋ฅด์ฝ”ํ”„ ๊ฒฐ์ • ๊ณผ์ •์„ ํ’€๊ธฐ ์œ„ํ•ด ๋ณต์žกํ•œ ๋ฌธ์ œ๋ฅผ ๊ฐ„๋‹จํ•œ ๋ถ€๋ฌธ์ œ๋กœ ๋ถ„ํ•ดํ•˜์—ฌ ์ •ํ™•ํ•ด๋ฅผ ๋„์ถœํ•˜๋Š” ๋™์  ๊ณ„ํš๋ฒ•์„ ์ด์šฉํ•œ๋‹ค. ํ•˜์ง€๋งŒ ๋งˆ๋ฅด์ฝ”ํ”„ ๊ฒฐ์ • ๊ณผ์ •์˜ ์ƒํƒœ ์ง‘ํ•ฉ๊ณผ ๊ฒฐ์ • ์ง‘ํ•ฉ์˜ ํฌ๊ธฐ๊ฐ€ ์ปค์ง€๋ฉด ๊ณ„์‚ฐ ๋ณต์žก๋„๊ฐ€ ์ฆ๊ฐ€ํ•˜๋ฏ€๋กœ, ๋™์  ๊ณ„ํš๋ฒ•์„ ์ด์šฉํ•œ ์ •ํ™•ํ•ด๋ฅผ ๋„์ถœํ•  ์ˆ˜ ์—†๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๊ทผ์‚ฌ์  ๋™์  ๊ณ„ํš๋ฒ•์„ ๋„์ž…ํ•˜์—ฌ ๊ทผ์‚ฌํ•ด๋ฅผ ๋„์ถœํ•˜๋ฉฐ, ๋Œ€๊ทœ๋ชจ ๊ณต๊ณต์ž์ „๊ฑฐ ๋„คํŠธ์›Œํฌ์—์„œ ๊ฐ€๋Šฅํ•ด๋ฅผ ์–ป๊ธฐ ์œ„ํ•ด ๊ฐ•ํ™”ํ•™์Šต ๋ชจํ˜•์„ ์ ์šฉํ•œ๋‹ค. ์žฅ๋ž˜ ๊ณต๊ณต์ž์ „๊ฑฐ ์ด์šฉ์ˆ˜์š”์˜ ๋ถˆํ™•์‹ค์„ฑ์„ ๋ชจ์‚ฌํ•˜๊ธฐ ์œ„ํ•ด, ๊ธฐ๊ณ„ํ•™์Šต ๊ธฐ๋ฒ•์˜ ์ผ์ข…์ธ random forest๋กœ ์˜ˆ์ธก ์ˆ˜์š”๋ฅผ ๋„์ถœํ•˜๊ณ , ์˜ˆ์ธก ์ˆ˜์š”๋ฅผ ํ‰๊ท ์œผ๋กœ ํ•˜๋Š” ํฌ์•„์†ก ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ผ ์ˆ˜์š”๋ฅผ ํ™•๋ฅ ์ ์œผ๋กœ ๋ฐœ์ƒ์‹œ์ผฐ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ด€์ธก ์ˆ˜์š”์™€ ์˜ˆ์ธก ์ˆ˜์š” ๊ฐ„์˜ ์ฐจ์ด์ธ ์˜ˆ์ธก์˜ค์ฐจ์— ๋น ๋ฅด๊ฒŒ ๋Œ€์‘ํ•˜๋Š” ์žฌ๋ฐฐ์น˜ ์ „๋žต์„ ๊ฐœ๋ฐœํ•˜๊ณ  ํšจ๊ณผ๋ฅผ ํ‰๊ฐ€ํ•œ๋‹ค. ๊ฐœ๋ฐœ๋œ ์ „๋žต์˜ ์šฐ์ˆ˜์„ฑ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด, ๊ธฐ์กด ์—ฐ๊ตฌ์˜ ์žฌ๋ฐฐ์น˜ ์ „๋žต ๋ฐ ํ˜„์‹ค์—์„œ ์ ์šฉ๋˜๋Š” ์ „๋žต์„ ๋ชจํ˜•ํ™”ํ•˜๊ณ  ๊ฒฐ๊ณผ๋ฅผ ๋น„๊ตํ•œ๋‹ค. ๋˜ํ•œ, ์žฌ๊ณ ๋Ÿ‰์˜ ์•ˆ์ „ ๊ตฌ๊ฐ„ ๋ฐ ์•ˆ์ „์žฌ๊ณ ๋Ÿ‰์— ๊ด€ํ•œ ๋ฏผ๊ฐ๋„ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ํ•จ์˜์ ์„ ์ œ์‹œํ•œ๋‹ค. ๊ฐœ๋ฐœ๋œ ์ „๋žต์˜ ํšจ๊ณผ๋ฅผ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ๊ธฐ์กด ์—ฐ๊ตฌ์˜ ์ „๋žต ๋ฐ ํ˜„์‹ค์—์„œ ์ ์šฉ๋˜๋Š” ์ „๋žต๋ณด๋‹ค ๊ฐœ์„ ๋œ ์„ฑ๋Šฅ์„ ๋ณด์ด๋ฉฐ, ํŠนํžˆ ์˜ˆ์ธก์˜ค์ฐจ๊ฐ€ ํฐ ๋Œ€์—ฌ์†Œ๋ฅผ ํƒ์ƒ‰ํ•˜๋Š” ์ „๋žต์ด ์ „์ฒด ๋Œ€์—ฌ์†Œ๋ฅผ ํƒ์ƒ‰ํ•˜๋Š” ์ „๋žต๊ณผ ์žฌ๋ฐฐ์น˜ ํšจ๊ณผ๊ฐ€ ์œ ์‚ฌํ•˜๋ฉด์„œ๋„ ๊ณ„์‚ฐ์‹œ๊ฐ„์„ ์ ˆ๊ฐํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๊ณต๊ณต์ž์ „๊ฑฐ ์ธํ”„๋ผ๋ฅผ ํ™•๋Œ€ํ•˜์ง€ ์•Š๊ณ ๋„ ์šด์˜์˜ ํšจ์œจํ™”๋ฅผ ํ†ตํ•ด ๊ณต๊ณต์ž์ „๊ฑฐ ์‹œ์Šคํ…œ์˜ ์ด์šฉ๋ฅ  ๋ฐ ์‹ ๋ขฐ์„ฑ์„ ์ œ๊ณ ํ•  ์ˆ˜ ์žˆ๊ณ , ๊ณต๊ณต์ž์ „๊ฑฐ ์žฌ๋ฐฐ์น˜์— ๊ด€ํ•œ ์ •์ฑ…์  ํ•จ์˜์ ์„ ์ œ์‹œํ•œ๋‹ค๋Š” ์ ์—์„œ ๋ณธ ์—ฐ๊ตฌ์˜ ์˜์˜๊ฐ€ ์žˆ๋‹ค.Chapter 1. Introduction ๏ผ‘ 1.1 Research Background and Purposes ๏ผ‘ 1.2 Research Scope and Procedure ๏ผ— Chapter 2. Literature Review ๏ผ‘๏ผ 2.1 Vehicle Routing Problems ๏ผ‘๏ผ 2.2 Bicycle Repositioning Problem ๏ผ‘๏ผ’ 2.3 Markov Decision Processes ๏ผ’๏ผ“ 2.4 Implications and Contributions ๏ผ’๏ผ– Chapter 3. Model Formulation ๏ผ’๏ผ˜ 3.1 Problem Definition ๏ผ’๏ผ˜ 3.2 Markov Decision Processes ๏ผ“๏ผ” 3.3 Demand Forecasting ๏ผ”๏ผ 3.4 Key Performance Indicator (KPI) ๏ผ”๏ผ• Chapter 4. Solution Algorithms ๏ผ”๏ผ— 4.1 Exact Solution Algorithm ๏ผ”๏ผ— 4.2 Approximate Dynamic Programming ๏ผ•๏ผ 4.3 Reinforcement Learning Method ๏ผ•๏ผ’ Chapter 5. Numerical Example ๏ผ•๏ผ• 5.1 Data Overview ๏ผ•๏ผ• 5.2 Experimental Design ๏ผ–๏ผ‘ 5.3 Algorithm Performance ๏ผ–๏ผ– 5.4 Sensitivity Analysis ๏ผ—๏ผ” 5.5 Large-scale Cases ๏ผ—๏ผ– Chapter 6. Conclusions ๏ผ˜๏ผ’ 6.1 Conclusions ๏ผ˜๏ผ’ 6.2 Future Research ๏ผ˜๏ผ“ References ๏ผ˜๏ผ– ์ดˆ ๋ก ๏ผ™๏ผ’Docto

    Modeling the Multicommodity Multimodal Routing Problem with Schedule-Based Services and Carbon Dioxide Emission Costs

    Get PDF
    We explore a freight routing problem wherein the aim is to assign optimal routes to move commodities through a multimodal transportation network. This problem belongs to the operational level of service network planning. The following formulation characteristics will be comprehensively considered: (1) multicommodity flow routing; (2) a capacitated multimodal transportation network with schedule-based rail services and time-flexible road services; (3) carbon dioxide emissions consideration; and (4) a generalized costs optimum oriented to customer demands. The specific planning of freight routing is thus defined as a capacitated time-sensitive multicommodity multimodal generalized shortest path problem. To solve this problem systematically, we first establish a node-arc-based mixed integer nonlinear programming model that combines the above formulation characteristics in a comprehensive manner. Then, we develop a linearization method to transform the proposed model into a linear one. Finally, a computational experiment from the Chinese inland container export business is presented to demonstrate the feasibility of the model and linearization method. The computational results indicate that implementing the proposed model and linearization method in the mathematical programming software Lingo can effectively solve the large-scale practical multicommodity multimodal transportation routing problem

    Ship Routing with Pickup and Delivery for a Maritime Oil Transportation System: MIP Modeland Heuristics

    Get PDF
    This paper examines a ship routing problem with pickup and delivery and time windows for maritime oil transportation, motivated by the production and logistics activities of an oil company operating in the Brazilian coast. The transportation costs from offshore platforms to coastal terminals are an important issue in the search for operational excellence in the oil industry, involving operations that demand agile and effective decision support systems. This paper presents an optimization approach to address this problem, based on a mixed integer programming (MIP) model and a novel and exploratory application of two tailor-made MIP heuristics, based on relax-and-fix and time decomposition procedures. The model minimizes fuel costs of a heterogeneous fleet of oil tankers and costs related to freighting contracts. The model also considers company-specific constraints for offshore oil transportation. Computational experiments based on the mathematical models and the related MIP heuristics are presented for a set of real data provided by the company, which confirm the potential of optimization-based methods to find good solutions for problems of moderate sizes
    • โ€ฆ
    corecore