173,936 research outputs found

    Boundary-RL: Reinforcement Learning for Weakly-Supervised Prostate Segmentation in TRUS Images

    Full text link
    We propose Boundary-RL, a novel weakly supervised segmentation method that utilises only patch-level labels for training. We envision the segmentation as a boundary detection problem, rather than a pixel-level classification as in previous works. This outlook on segmentation may allow for boundary delineation under challenging scenarios such as where noise artefacts may be present within the region-of-interest (ROI) boundaries, where traditional pixel-level classification-based weakly supervised methods may not be able to effectively segment the ROI. Particularly of interest, ultrasound images, where intensity values represent acoustic impedance differences between boundaries, may also benefit from the boundary delineation approach. Our method uses reinforcement learning to train a controller function to localise boundaries of ROIs using a reward derived from a pre-trained boundary-presence classifier. The classifier indicates when an object boundary is encountered within a patch, as the controller modifies the patch location in a sequential Markov decision process. The classifier itself is trained using only binary patch-level labels of object presence, which are the only labels used during training of the entire boundary delineation framework, and serves as a weak signal to inform the boundary delineation. The use of a controller function ensures that a sliding window over the entire image is not necessary. It also prevents possible false-positive or -negative cases by minimising number of patches passed to the boundary-presence classifier. We evaluate our proposed approach for a clinically relevant task of prostate gland segmentation on trans-rectal ultrasound images. We show improved performance compared to other tested weakly supervised methods, using the same labels e.g., multiple instance learning.Comment: Accepted to MICCAI Workshop MLMI 2023 (14th International Conference on Machine Learning in Medical Imaging

    Methods of conflict probability estimation and decision making for air traffic management

    Get PDF
    This research addresses the issue of conflict detection in Air Traffic Control (ATC) and in Airborne Separation Assurance System (ASAS) domains. Stochastic methods of conflict situation detection and conflict probability evaluation are presented. These methods can be used for air traffic conflict alert and avoidance systems for mid‐range monitoring of air traffic and for flight safety. The mathematical formulation of the problem and the procedure of evaluation are presented. Two methods are introduced. One is based on fast statistical simulation of predicted violations of safe separation standards, and the other gives a closed‐form analytic expression that can be applied to numerical evaluation methods. The next method proposed is a method of sequential evaluation of decision‐making time limit to prevent a dangerous approach of the aircraft for short‐range monitoring. The problem is solved by assuming that the estimation and prediction of trajectory are based on the spline‐function method. The evaluation of the boundary instants for decision‐making is achieved by solving the derived boundary equation for fixed decision‐making distance. The distinguishing feature of this method is transformation of a confidence interval of predicted distance to a confidence interval of predicted time for estimation of the decision‐making time limit. First Published Online: 14 Oct 201

    SPODT: An R Package to Perform Spatial Partitioning

    Get PDF
    International audienceSpatial cluster detection is a classical question in epidemiology: Are cases located near other cases? In order to classify a study area into zones of different risks and determine their boundaries, we have developed a spatial partitioning method based on oblique decision trees, which is called spatial oblique decision tree (SpODT). This non-parametric method is based on the classification and regression tree (CART) approach introduced by Leo Breiman. Applied to epidemiological spatial data, the algorithm recursively searches among the coordinates for a threshold or a boundary between zones, so that the risks estimated in these zones are as different as possible. While the CART algorithm leads to rectangular zones, providing perpendicular splits of longitudes and latitudes, the SpODT algorithm provides oblique splitting of the study area, which is more appropriate and accurate for spatial epidemiology. Oblique decision trees can be considered as non-parametric regression models. Beyond the basic function, we have developed a set of functions that enable extended analyses of spatial data, providing: inference, graphical representations, spatio-temporal analysis, adjustments on covariates, spatial weighted partition, and the gathering of similar adjacent final classes. In this paper, we propose a new R package, SPODT, which provides an extensible set of functions for partitioning spatial and spatio-temporal data. The implementation and extensions of the algorithm are described. Function usage examples are proposed, looking for clustering malaria episodes in Bandiagara, Mali, and samples showing three different cluster shapes

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure
    • 

    corecore