219 research outputs found

    Wireless Broadcast with Network Coding in Mobile Ad-Hoc Networks: DRAGONCAST

    Get PDF
    Network coding is a recently proposed method for transmitting data, which has been shown to have potential to improve wireless network performance. We study network coding for one specific case of multicast, broadcasting, from one source to all nodes of the network. We use network coding as a loss tolerant, energy-efficient, method for broadcast. Our emphasis is on mobile networks. Our contribution is the proposal of DRAGONCAST, a protocol to perform network coding in such a dynamically evolving environment. It is based on three building blocks: a method to permit real-time decoding of network coding, a method to adjust the network coding transmission rates, and a method for ensuring the termination of the broadcast. The performance and behavior of the method are explored experimentally by simulations; they illustrate the excellent performance of the protocol

    Power Considerations for Sensor Networks

    Get PDF

    Proactive Highly Ambulatory Sensor Routing (PHASeR) protocol for mobile wireless sensor networks

    Get PDF
    This paper presents a novel multihop routing protocol for mobile wireless sensor networks called PHASeR (Proactive Highly Ambulatory Sensor Routing). The proposed protocol uses a simple hop-count metric to enable the dynamic and robust routing of data towards the sink in mobile environments. It is motivated by the application of radiation mapping by unmanned vehicles, which requires the reliable and timely delivery of regular measurements to the sink. PHASeR maintains a gradient metric in mobile environments by using a global TDMA MAC layer. It also uses the technique of blind forwarding to pass messages through the network in a multipath manner. PHASeR is analysed mathematically based on packet delivery ratio, average packet delay, throughput and overhead. It is then simulated with varying mobility, scalability and traffic loads. The protocol gives good results over all measures, which suggests that it may also be suitable for a wider array of emerging applications

    Effect of steel fibre volume fraction on thermal performance of lightweight foamed mortar (LFM) at ambient temperature

    Get PDF
    Lightweight foamed mortar (LFM) has grow into utmost commercial building material in the construction industry for non-structural and semi-structural applications owing to its reduced self-weight, flowability, stability and excellent thermal insulation properties. Hence, this study was conducted with the aims to develop an alternative for conventional concrete bricks and blocks for non-structural and semi-structural applications of masonry. Lightweight foamed mortar (LFM) is either a cement paste or mortar, relegated as lightweight concrete, in which suitable foaming agent entraps the air-voids in mortar. It therefore has a wide range of applications such as material for wall blocks or panels, floor & roof screeds, trench reinstatement, road foundations and voids filling. This research focuses on experimental investigation of thermal properties of LFM with inclusion of relatively low volume fraction (0.2% and 0.4%) of steel fibre at ambient temperature. There are three parameters will be scrutinized such as thermal conductivity, thermal diffusivity as well as the specific heat capacity. There are two densities of 600kg/m3 and 1200kg/m3 had been cast and tested. The mix design proportion of LFM used for cement, aggregate and water ratio was 1: 1.5:0.45. The experimental results had indicated that the thermal conductivity, thermal diffusivity and specific heat value slightly higher than control mix due to the addition of steel fibres. For instance, thermal conductivity, diffusivity and specific heat of 600 kg/m3 density control mix were 0.212W/mK, 0.477mm2/s and 545 J/kgâ—¦C respectively. When 0.2% volume fraction of steel fiber was added in the mix of 600 kg/m3 density, the value of thermal conductivity, diffusivity and specific heat were increased to 0.235W/mK, 0.583mm2/s and 578 J/kgâ—¦C correspondingly. This is due to the characteristic of the steel fibre application in which steel fibre is good as heat conductor and excellent in absorbing heat. Therefore there is a potential of utilizing steel fiber in cement based material like LFM for components that needs excellent heat absorption capacity

    Reducing Communication Delay Variability for a Group of Robots

    Get PDF
    A novel architecture is presented for reducing communication delay variability for a group of robots. This architecture relies on using three components: a microprocessor architecture that allows deterministic real-time tasks; an event-based communication protocol in which nodes transmit in a TDMA fashion, without the need of global clock synchronization techniques; and a novel communication scheme that enables deterministic communications by allowing senders to transmit without regard for the state of the medium or coordination with other senders, and receivers can tease apart messages sent simultaneously with a high probability of success. This approach compared to others, allows simultaneous communications without regard for the state of the transmission medium, it allows deterministic communications, and it enables ordered communications that can be a applied in a team of robots. Simulations and experimental results are also included

    Information distribution and recharging dispatch strategy in large wireless networks

    Get PDF
    Large wireless networks are envisioned to play increasingly important roles as more and more mobile wireless devices and Internet of Things (IoT) devices are put in use. In these networks, it is often the case that some critical information needs to be readily accessible, requiring a careful design of the information distribution technique. In this work, we at first propose PeB, Periodic Broadcast, that takes advantage of periodic broadcast from the information server(s) to leave traces for nodes requesting for the information while maintaining a low overhead. Similar to swarm intelligence, PeB requires each node to keep track of traces, or past records of information flow, through itself toward information servers. We present our extensive investigation of the PeB scheme on cost and network dynamics as compared to other state-of-the-art techniques. When the devices run out of battery, they become static and need to be recharged by the wireless charging vehicles (WCVs). Often times, WCV receives a number of charging requests and form a Hamiltonian cycle and visit these nodes one-by-one. We also propose a heuristic algorithm, termed Quad, that generates a Hamiltonian cycle in a square plane. We then focus on the theoretical study of the length of the Hamiltonian cycles in such networks

    QoS-Based Web Service Discovery in Mobile Ad Hoc Networks Using Swarm Strategies

    Get PDF
    • …
    corecore