17,366 research outputs found

    Parallel Branch-and-Bound in Multi-core Multi-CPU Multi-GPU Heterogeneous Environments

    Get PDF
    International audienceWe investigate the design of parallel B&B in large scale heterogeneous compute environments where processing units can be composed of a mixture of multiple shared memory cores, multiple distributed CPUs and multiple GPUs devices. We describe two approaches addressing the critical issue of how to map B&B workload with the different levels of parallelism exposed by the target compute platform. We also contribute a throughout large scale experimental study which allows us to derive a comprehensive and fair analysis of the proposed approaches under different system configurations using up to 16 GPUs and up to 512 CPU-cores. Our results shed more light on the main challenges one has to face when tackling B&B algorithms while describing efficient techniques to address them. In particular, we are able to obtain linear speed-ups at moderate scales where adaptive load balancing among the heterogeneous compute resources is shown to have a significant impact on performance. At the largest scales, intra-node parallelism and hybrid decentralized load balancing is shown to have a crucial importance in order to alleviate locking issues among shared memory threads and to scale the distributed resources while optimizing communication costs and minimizing idle time

    Monitoring Partially Synchronous Distributed Systems using SMT Solvers

    Full text link
    In this paper, we discuss the feasibility of monitoring partially synchronous distributed systems to detect latent bugs, i.e., errors caused by concurrency and race conditions among concurrent processes. We present a monitoring framework where we model both system constraints and latent bugs as Satisfiability Modulo Theories (SMT) formulas, and we detect the presence of latent bugs using an SMT solver. We demonstrate the feasibility of our framework using both synthetic applications where latent bugs occur at any time with random probability and an application involving exclusive access to a shared resource with a subtle timing bug. We illustrate how the time required for verification is affected by parameters such as communication frequency, latency, and clock skew. Our results show that our framework can be used for real-life applications, and because our framework uses SMT solvers, the range of appropriate applications will increase as these solvers become more efficient over time.Comment: Technical Report corresponding to the paper accepted at Runtime Verification (RV) 201
    corecore