31 research outputs found

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    Internet of Things 2.0: Concepts, Applications, and Future Directions

    Full text link
    Applications and technologies of the Internet of Things are in high demand with the increase of network devices. With the development of technologies such as 5G, machine learning, edge computing, and Industry 4.0, the Internet of Things has evolved. This survey article discusses the evolution of the Internet of Things and presents the vision for Internet of Things 2.0. The Internet of Things 2.0 development is discussed across seven major fields. These fields are machine learning intelligence, mission critical communication, scalability, energy harvesting-based energy sustainability, interoperability, user friendly IoT, and security. Other than these major fields, the architectural development of the Internet of Things and major types of applications are also reviewed. Finally, this article ends with the vision and current limitations of the Internet of Things in future network environments

    A framework for adoption of drones in the Dominican Republic construction industry

    Get PDF
    A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophy.There is a severe problem in developing countries in whether or not adopt technologies for facilitating daily tasks. It is happening mostly in sectors with low skills employees as the construction industry. The adoption of technologies in developing countries is a challenge that affect health, economy, and consciousness advancement. Furthermore, the scepticism in the what, how, and why the effectiveness of certain technologies, as drones, difficult the cost-benefit of the decision-making process for organisations in developing countries. This cost-benefit decision, involved in the cases of UAS applications, covers the regulatory and practical implications that are barriers in developed countries. But, in developing one, seems to have another set of barriers that should be investigate in-depth. Therefore, the aim of this research is to develop an ontology for public, private, and non-profit organisations that explain the epistemological implications in the implementation of Unmanned Aerial Systems for the Construction Industry in the Dominican Republic. The study approaches an iterative strategy of interviewing 24 participants in a semi-structured format. Then, the Nvivo 2020 software was used to identify cases utilising ground theory coding, thematic and content analysis. Later, the root cause reasons and challenges of implementing UAS were identified utilising Interpretative Structured Method (ISM) and their sub analyses. 5 Cases of studies were presented (real estate, construction, infrastructure, urban development, and disaster management) to illustrate the drone operations. The findings reveal that a hybrid management adoption approach have been the most suitable with drones in the country. The root cause of drone implementation and its barriers were cost reduction and reactive cultural respectively. Strategic and operational ontologies for UAS skill programs, understanding of UAS outcomes, and Building Information Modelling integration were developed in order to focus efforts on developing drones for cargo, assisting humans, and digitalisation. Mandates are recommended for policy makers as drones for digitalisation initiates digital workflows towards BIM. Other scenarios should be considering scenarios where autonomous aerial operations affect safety in future operations. Furthermore, recommendations on legal and standards should be updated in order to allow UAS outcomes as law acceptable. Further works are recommended in decentralised systems, artificial intelligence, and drone applications.Ministry of Higher Education, Science and Technology

    Transmission Rate Compression Based on Kalman Filter Using Spatio-temporal Correlation for Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) composed of spatially distributed autonomous sensor nodes have been applied to a wide variety of applications. Due to the limited energy budget of the sensor nodes and long-term operation requirement of the network, energy efficiency is a primary concern in almost any application. Radio communication, known as one of the most expensive processes, can be suppressed thanks to the temporal and spatial correlations. However, it is a challenge to compress the communication as much as possible, while reconstructing the system state with the highest quality. This work proposes the PKF method to compress the transmission rate for cluster based WSNs, which combines a k-step ahead Kalman predictor with a Kalman filter (KF). It provides the optimal reconstruction solution based on the compressed information of a single node for a linear system. Instead of approximating the noisy raw data, PKF aims to reconstruct the internal state of the system. It achieves data filtering, state estimation, data compression and reconstruction within one KF framework and allows the reconstructed signal based on the compressed transmission to be even more precise than transmitting all of the raw measurements without processing. The second contribution is the detailed analysis of PKF. It not only characterizes the effect of the system parameters on the performance of PKF but also supplies a common framework to analyze the underlying process of prediction-based schemes. The transmission rate and reconstruction quality are functions of the system parameters, which are calculated with the aid of (truncated) multivariate normal (MVN) distribution. The transmission of the node using PKF not only determines the current optimal estimate of the system state, but also indicates the range and the transmission probability of the k-step ahead prediction of the cluster head. Besides, one of the prominent results is an explicit expression for the covariance of the doubly truncated MVN distribution. This is the first work that calculates it using the Hessian matrix of the probability density function of a MVN distribution, which improves the traditional methods using moment-generating function and has generality. This contribution is important for WSNs, but also for other domains, e.g., statistics and economics. The PKF method is extended to use spatial correlation in multi-nodes systems without any intra-communication or a coordinator based on the above analysis. Each leaf node executes a PKF independently. The reconstruction quality is further improved by the cluster head using the received information, which is equivalent to further reduce the transmission rate of the node under the guaranteed reconstruction quality. The optimal reconstruction solution, called Rand-ST, is obtained, when the cluster head uses the incomplete information by taking the transmission of each node as random. Rand-ST actually solves the KF fusion problem with colored and randomly transmitted observations, which is the first work addressing this problem to the best of our knowledge. It proves the KF with state augment method is more accurate than the measurement differencing approach in this scenario. The suboptimality of Rand-ST by neglecting the useful information is analyzed, when the transmission of each node is controlled by PKF. The heuristic EPKF methods are thereupon proposed to utilize the complete information, while solving the nonlinear problem through linear approximations. Compared with the available techniques, EPKF methods not only ensure an error bound of the reconstruction for each node, but also allow them to report the emergency event in time, which avoids the loss of penitential important information

    A Novel Variable Geometry based Planar Inductor Design for Wireless Charging Application

    Get PDF
    In this thesis, the performance, modelling and application of a planar electromagnetic coil are discussed. Due to the small size profiles and their non‐contact nature, planar coils are widely used due to their simple and basic design. The uncertain parameters have been identified and simulated using ANSYS that has been run utilising a newly developed MATLAB code. This code has made it possible to run thousands of trials without the need to manually input the various parameters for each run. This has facilitated the process of obtaining all the probable solutions within the defined range of properties. The optimum and robust design properties were then determined. The thesis discusses the experimentation and the finite element modelling (FEM) performed for developing the design of planar coils and used in wireless chargers. In addition, the thesis investigates the performance of various topologies of planar coils when they are used in wireless chargers. The ANSYS Maxwell FEM package has been used to analyse the models while varying the topologies of the coils. For this purpose, different models in FEM were constructed and then tested with topologies such as circular, square and hexagon coil configurations. The described methodology is considered as an effective way for obtaining maximum Power transfer efficiency (PTE) with a certain distance on planar coils with better performance. The explored designs studies are, namely: (1) Optimization of Planar Coil Using Multi-core, (2) planar coil with an Orthogonal Flux Guide, (3) Using the Variable Geometry in a Planar coil for an Optimised Performance by using the robust design method, (4) Design and Integration of Planar coil on wireless charger. In the first design study, the aim is to present the behaviour of a newly developed planar coil, built from a Mu-metal, via simulation. The structure consists of an excitation coil, sensing coils and three ferromagnetic cores 2 located on the top, middle and bottom sections of the coil in order to concentrate the field using the iterative optimisation technique. Magnetic materials have characteristics which allows them to influence the magnetic field in its environment. The second design study presents the optimal geometry and material selection for the planar with an Orthogonal Flux Guide. The study demonstrates the optimising of the materials and geometry of the coil that provides savings in terms of material usage as well as the employed electric current to produce an equivalent magnetic field. The third design study presents the variable geometry in a planar inductor to obtain the optimised performance. The study has provided the optimum and robust design parameters in terms of different topologies such as circular, square and hexagon coil configurations and then tested, Once the best topology is chosen based on performance. The originality of the work is evident through the randomisation of the parameters using the developed MATLAB code and the optimisation of the joint performance under defined conditions. Finally, the fourth design study presents the development of the planar coil applications. Three shapes of coils are designed and experimented to calculate the inductance and the maximum power transfer efficiency (PTW) over various spacing distances and frequency

    On the Road to 6G: Visions, Requirements, Key Technologies and Testbeds

    Get PDF
    Fifth generation (5G) mobile communication systems have entered the stage of commercial development, providing users with new services and improved user experiences as well as offering a host of novel opportunities to various industries. However, 5G still faces many challenges. To address these challenges, international industrial, academic, and standards organizations have commenced research on sixth generation (6G) wireless communication systems. A series of white papers and survey papers have been published, which aim to define 6G in terms of requirements, application scenarios, key technologies, etc. Although ITU-R has been working on the 6G vision and it is expected to reach a consensus on what 6G will be by mid-2023, the related global discussions are still wide open and the existing literature has identified numerous open issues. This paper first provides a comprehensive portrayal of the 6G vision, technical requirements, and application scenarios, covering the current common understanding of 6G. Then, a critical appraisal of the 6G network architecture and key technologies is presented. Furthermore, existing testbeds and advanced 6G verification platforms are detailed for the first time. In addition, future research directions and open challenges are identified for stimulating the on-going global debate. Finally, lessons learned to date concerning 6G networks are discussed

    Sensor Characteristics Reference Guide

    Full text link
    corecore