34,414 research outputs found

    Adaptive Signal Processing Strategy for a Wind Farm System Fault Accommodation

    Get PDF
    In order to improve the availability of offshore wind farms, thus avoiding unplanned operation and maintenance costs, which can be high for offshore installations, the accommodation of faults in their earlier occurrence is fundamental. This paper addresses the design of an active fault tolerant control scheme that is applied to a wind park benchmark of nine wind turbines, based on their nonlinear models, as well as the wind and interactions between the wind turbines in the wind farm. Note that, due to the structure of the system and its control strategy, it can be considered as a fault tolerant cooperative control problem of an autonomous plant. The controller accommodation scheme provides the on-line estimate of the fault signals generated by nonlinear filters exploiting the nonlinear geometric approach to obtain estimates decoupled from both model uncertainty and the interactions among the turbines. This paper proposes also a data-driven approach to provide these disturbance terms in analytical forms, which are subsequently used for designing the nonlinear filters for fault estimation. This feature of the work, followed by the simpler solution relying on a data-driven approach, can represent the key point when on-line implementations are considered for a viable application of the proposed scheme

    Deep neural learning based distributed predictive control for offshore wind farm using high fidelity LES data

    Get PDF
    The paper explores the deep neural learning (DNL) based predictive control approach for offshore wind farm using high fidelity large eddy simulations (LES) data. The DNL architecture is defined by combining the Long Short-Term Memory (LSTM) units with Convolutional Neural Networks (CNN) for feature extraction and prediction of the offshore wind farm. This hybrid CNN-LSTM model is developed based on the dynamic models of the wind farm and wind turbines as well as higher-fidelity LES data. Then, distributed and decentralized model predictive control (MPC) methods are developed based on the hybrid model for maximizing the wind farm power generation and minimizing the usage of the control commands. Extensive simulations based on a two-turbine and a nine-turbine wind farm cases demonstrate the high prediction accuracy (97% or more) of the trained CNN-LSTM models. They also show that the distributed MPC can achieve up to 38% increase in power generation at farm scale than the decentralized MPC. The computational time of the distributed MPC is around 0.7s at each time step, which is sufficiently fast as a real-time control solution to wind farm operations

    A Markovian jump system approach for the estimation and adaptive diagnosis of decreased power generation in wind farms

    Get PDF
    In this study, a Markovian jump model of the power generation system of a wind turbine is proposed and the authors present a closed-loop model-based observer to estimate the faults related to energy losses. The observer is designed through an H∞-based optimisation problem that optimally fixes the trade-off between the observer fault sensitivity and robustness. The fault estimates are then used in data-based decision mechanisms for achieving fault detection and isolation. The performance of the strategy is then ameliorated in a wind farm (WF) level scheme that uses a bank of the aforementioned observers and decision mechanisms. Finally, the proposed approach is tested using a well-known benchmark in the context of WF fault diagnosis

    Review of trends and targets of complex systems for power system optimization

    Get PDF
    Optimization systems (OSs) allow operators of electrical power systems (PS) to optimally operate PSs and to also create optimal PS development plans. The inclusion of OSs in the PS is a big trend nowadays, and the demand for PS optimization tools and PS-OSs experts is growing. The aim of this review is to define the current dynamics and trends in PS optimization research and to present several papers that clearly and comprehensively describe PS OSs with characteristics corresponding to the identified current main trends in this research area. The current dynamics and trends of the research area were defined on the basis of the results of an analysis of the database of 255 PS-OS-presenting papers published from December 2015 to July 2019. Eleven main characteristics of the current PS OSs were identified. The results of the statistical analyses give four characteristics of PS OSs which are currently the most frequently presented in research papers: OSs for minimizing the price of electricity/OSs reducing PS operation costs, OSs for optimizing the operation of renewable energy sources, OSs for regulating the power consumption during the optimization process, and OSs for regulating the energy storage systems operation during the optimization process. Finally, individual identified characteristics of the current PS OSs are briefly described. In the analysis, all PS OSs presented in the observed time period were analyzed regardless of the part of the PS for which the operation was optimized by the PS OS, the voltage level of the optimized PS part, or the optimization goal of the PS OS.Web of Science135art. no. 107

    The role of intelligent systems in delivering the smart grid

    Get PDF
    The development of "smart" or "intelligent" energy networks has been proposed by both EPRI's IntelliGrid initiative and the European SmartGrids Technology Platform as a key step in meeting our future energy needs. A central challenge in delivering the energy networks of the future is the judicious selection and development of an appropriate set of technologies and techniques which will form "a toolbox of proven technical solutions". This paper considers functionality required to deliver key parts of the Smart Grid vision of future energy networks. The role of intelligent systems in providing these networks with the requisite decision-making functionality is discussed. In addition to that functionality, the paper considers the role of intelligent systems, in particular multi-agent systems, in providing flexible and extensible architectures for deploying intelligence within the Smart Grid. Beyond exploiting intelligent systems as architectural elements of the Smart Grid, with the purpose of meeting a set of engineering requirements, the role of intelligent systems as a tool for understanding what those requirements are in the first instance, is also briefly discussed

    Markets, Institutions and Sustainability

    Get PDF
    Encouraging and stimulating markets for new and innovative environmental goods and services is crucial to move our economy towards sustainability. Formal legislation, government policies, and price mechanisms alone, are not however, sufficient to guarantee the development of new markets. This paper demonstrates the importance of market participants developing their own ‘rules of the game’, their own sets of informal practices, routines, and institutions to make the market work. A case study on Australia’s successfully developing wind energy market is utilised to illustrate these market processes in action. Market ‘emergence’ or market ‘creation’ is explored from an institutional and evolutionary perspective. The first section is dedicated to elaborating the markets as institutions perspective whilst theoretical insights into how markets as institutions might emerge are detailed in the second section. In the third section institutional emergence of the wind energy market in Australia is explained by means of a theoretical framework developed from the case study. The research points to unique market behaviours, committed buyer-seller relationships, learned exchange capabilities, and institutionalised market practices as necessary features of successfully emergent markets. The paper concludes with directions to support new market development for environmental sustainability.Market, Institution, Emergence, Learning, Exchange

    Cooperative Longevity and Sustainable Development in a Family Farming System

    Get PDF
    This paper focuses on small holding, family farming in Southeast Spain where agricultural economic activity is predominantly organized around cooperative business models. A variety of diverse studies on the Almería agricultural and credit cooperative sector and the exploration of social-economic and eco-social indicators, in addition to economic-market indicators are presented. Each correspond to a cooperative “logic” that spans theoretical perspectives from the dominant economic-market model, new institutionalism, and an eco-social approach, echoing theories on collective coordination governance, and the avoidance of the “tragedy of the commons”. The latter is of particular importance given environmental challenges and scarce resources for agricultural activity. The cooperatives in Almería have increasingly relied on collective collaboration and coordination in order to meet social-economic and social-ecological challenges, transforming their role from that founded on a market dominant logic to that of cooperation as a coordination mechanism based on the mutual benefit of the community and environment. In turn, their ability to meet a wide range of needs and challenges of members and the community leads to their longevity. Cooperatives are able to act as both a market and non-market coordination mechanism, balancing the economic, social, and environmental dimensions, such that neither market nor non-market logics are dominant or exclusive
    corecore