11,290 research outputs found

    Robust and Uncertainty-Aware Software Vulnerability Detection Using Bayesian Recurrent Neural Networks

    Get PDF
    Software systems are prone to code defects or vulnerabilities, resulting in several cyberattacks such as hacking, identity breach and information leakage leading to system failure. Vulnerabilities in software systems have severe societal implications, including threats to public safety, financial damage, and even risks to national security. Identifying and mitigating software vulnerabilities is critical to protect organizations and societies from potential threats. Machine learning algorithms have been employed to detect and classify potential vulnerabilities in software source code automatically. However, these algorithms are not robust to noise or malicious attacks and cannot quantify uncertainty in the model’s output. Quantifying uncertainty in the vulnerability detection mechanism can inform the user of possible noise or perturbation in the source codes and holds the promise for the safe deployment of trustworthy algorithms in real-world security applications. We develop a robust software vulnerability detection framework using Bayesian Recurrent Neural Networks (Bayesian SVD). The proposed models detect source code vulnerabilities and simultaneously learn uncertainty in output predictions. The proposed Bayesian SVD adopts variational inference and optimizes the variational posterior distribution defined over the model parameters using the evidence lower bound (ELBO). Within each state, the first two moments of the variational distribution are transmitted through the recurrent layers. At the SVD models’ output, the predictive distribution’s mean indicates the vulnerability class, while the covariance matrix captures the uncertainty information. Extensive experiments on benchmark datasets reveal (1) the robustness of the proposed models under noisy conditions and malicious attacks compared to the deterministic counterpart and (2) significantly higher uncertainty when the model encountered high levels of natural noise or malicious attacks, which serves as a warning for safe handling

    Deep security analysis of program code: a systematic literature review

    Get PDF
    Due to the continuous digitalization of our society, distributed and web-based applications become omnipresent and making them more secure gains paramount relevance. Deep learning (DL) and its representation learning approach are increasingly been proposed for program code analysis potentially providing a powerful means in making software systems less vulnerable. This systematic literature review (SLR) is aiming for a thorough analysis and comparison of 32 primary studies on DL-based vulnerability analysis of program code. We found a rich variety of proposed analysis approaches, code embeddings and network topologies. We discuss these techniques and alternatives in detail. By compiling commonalities and differences in the approaches, we identify the current state of research in this area and discuss future directions. We also provide an overview of publicly available datasets in order to foster a stronger benchmarking of approaches. This SLR provides an overview and starting point for researchers interested in deep vulnerability analysis on program code

    Sentiment Analysis Using Deep Learning: A Comparison Between Chinese And English

    Get PDF
    With the increasing popularity of opinion-rich resources, opinion mining and sentiment analysis has received increasing attention. Sentiment analysis is one of the most effective ways to find the opinion of authors. By mining what people think, sentiment analysis can provide the basis for decision making. Most of the objects of analysis are text data, such as Facebook status and movie reviews. Despite many sentiment classification models having good performance on English corpora, they are not good at Chinese or other languages. Traditional sentiment approaches impose many restrictions on the raw data, and they don't have enough capacity to deal with long-distance sequential dependencies. So, we propose a model based on recurrent neural network model using a context vector space model. Chinese information entropy is typically higher than English, we therefore hypothesise that context vector space model can be used to improve the accuracy of sentiment analysis. Our algorithm represents each complex input by a dense vector trained to translate sequence data to another sequence, like the translation of English and French. Then we build a recurrent neural network with the Long-Short-Term Memory model to deal the long-distance dependencies in input data, such as movie review. The results show that our approach has promise but still has a lot of room for improvement

    Deep Adaptive Feature Embedding with Local Sample Distributions for Person Re-identification

    Full text link
    Person re-identification (re-id) aims to match pedestrians observed by disjoint camera views. It attracts increasing attention in computer vision due to its importance to surveillance system. To combat the major challenge of cross-view visual variations, deep embedding approaches are proposed by learning a compact feature space from images such that the Euclidean distances correspond to their cross-view similarity metric. However, the global Euclidean distance cannot faithfully characterize the ideal similarity in a complex visual feature space because features of pedestrian images exhibit unknown distributions due to large variations in poses, illumination and occlusion. Moreover, intra-personal training samples within a local range are robust to guide deep embedding against uncontrolled variations, which however, cannot be captured by a global Euclidean distance. In this paper, we study the problem of person re-id by proposing a novel sampling to mine suitable \textit{positives} (i.e. intra-class) within a local range to improve the deep embedding in the context of large intra-class variations. Our method is capable of learning a deep similarity metric adaptive to local sample structure by minimizing each sample's local distances while propagating through the relationship between samples to attain the whole intra-class minimization. To this end, a novel objective function is proposed to jointly optimize similarity metric learning, local positive mining and robust deep embedding. This yields local discriminations by selecting local-ranged positive samples, and the learned features are robust to dramatic intra-class variations. Experiments on benchmarks show state-of-the-art results achieved by our method.Comment: Published on Pattern Recognitio
    • …
    corecore