3,568 research outputs found

    Big Data in Critical Infrastructures Security Monitoring: Challenges and Opportunities

    Full text link
    Critical Infrastructures (CIs), such as smart power grids, transport systems, and financial infrastructures, are more and more vulnerable to cyber threats, due to the adoption of commodity computing facilities. Despite the use of several monitoring tools, recent attacks have proven that current defensive mechanisms for CIs are not effective enough against most advanced threats. In this paper we explore the idea of a framework leveraging multiple data sources to improve protection capabilities of CIs. Challenges and opportunities are discussed along three main research directions: i) use of distinct and heterogeneous data sources, ii) monitoring with adaptive granularity, and iii) attack modeling and runtime combination of multiple data analysis techniques.Comment: EDCC-2014, BIG4CIP-201

    Integrating monitor alarms with laboratory test results to enhance patient deterioration prediction

    Get PDF
    AbstractPatient monitors in modern hospitals have become ubiquitous but they generate an excessive number of false alarms causing alarm fatigue. Our previous work showed that combinations of frequently co-occurring monitor alarms, called SuperAlarm patterns, were capable of predicting in-hospital code blue events at a lower alarm frequency. In the present study, we extend the conceptual domain of a SuperAlarm to incorporate laboratory test results along with monitor alarms so as to build an integrated data set to mine SuperAlarm patterns. We propose two approaches to integrate monitor alarms with laboratory test results and use a maximal frequent itemsets mining algorithm to find SuperAlarm patterns. Under an acceptable false positive rate FPRmax, optimal parameters including the minimum support threshold and the length of time window for the algorithm to find the combinations of monitor alarms and laboratory test results are determined based on a 10-fold cross-validation set. SuperAlarm candidates are generated under these optimal parameters. The final SuperAlarm patterns are obtained by further removing the candidates with false positive rate>FPRmax. The performance of SuperAlarm patterns are assessed using an independent test data set. First, we calculate the sensitivity with respect to prediction window and the sensitivity with respect to lead time. Second, we calculate the false SuperAlarm ratio (ratio of the hourly number of SuperAlarm triggers for control patients to that of the monitor alarms, or that of regular monitor alarms plus laboratory test results if the SuperAlarm patterns contain laboratory test results) and the work-up to detection ratio, WDR (ratio of the number of patients triggering any SuperAlarm patterns to that of code blue patients triggering any SuperAlarm patterns). The experiment results demonstrate that when varying FPRmax between 0.02 and 0.15, the SuperAlarm patterns composed of monitor alarms along with the last two laboratory test results are triggered at least once for [56.7–93.3%] of code blue patients within an 1-h prediction window before code blue events and for [43.3–90.0%] of code blue patients at least 1-h ahead of code blue events. However, the hourly number of these SuperAlarm patterns occurring in control patients is only [2.0–14.8%] of that of regular monitor alarms with WDR varying between 2.1 and 6.5 in a 12-h window. For a given FPRmax threshold, the SuperAlarm set generated from the integrated data set has higher sensitivity and lower WDR than the SuperAlarm set generated from the regular monitor alarm data set. In addition, the McNemar’s test also shows that the performance of the SuperAlarm set from the integrated data set is significantly different from that of the SuperAlarm set from the regular monitor alarm data set. We therefore conclude that the SuperAlarm patterns generated from the integrated data set are better at predicting code blue events

    Clinician-in-the-Loop Annotation of ICU Bedside Alarm Data

    Get PDF
    In this work, we describe the state of clinical monitoring in the intensive care unit and operating room, where patients are at their most fragile and thus monitoring is most heightened. We describe how large amounts of data generated by monitoring patients’ physiologic signals, along with the ubiquitous aspecific threshold alarms in use today, cause dangerous alarm fatigue for medical caregivers. In order to build more specific, more useful alarms, we gathered a novel data set that would allow us to assess the number, types, and utility of alarms currently in use in the intensive care unit. To do this, we developed a system to collect physiologic monitor data, alarms, and annotations of those alarms provided electronically by clinicians. We describe the collection process for this novel data set and provide a preliminary description of the data

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems
    • …
    corecore