337 research outputs found

    Spectrum handoff strategy for cognitive radio-based Mac in industrial wirless sensor and actuator networks

    Get PDF
    In this thesis, a Cognitive Radio(CR)-based MAC for Industrial Wireless Sensor and Actuator Network (IWSAN) applications is proposed. IWSANs are typically used for closed-loop control applications, and they demand strict requirements in terms of time and robustness. Low latency and low error rates are required in order not to endanger persons or machinery. Moreover, these applications operate in industrial environments such as factories or transport scenarios (as aeronautics or railway) where multipath fading and shadowing are present due to metal surfaces. Furthermore, interference from other communication systems or industrial machinery is also common in these environments. The proposed MAC, based on the CR paradigm, is capable of ensuring time and robustness requirements in industrial channels. In the process of designing the CR-based MAC for IWSAN applications, a comparison between several non-CR-based MACs and CR-based MACs has been carried out. This comparison, which allows stating the benefits of CR for these applications, is presented in this thesis. The performance of every MAC is determined theoretically using Network Calculus, and it is validated through OPNET simulations. CR solutions, due to their adaptability characteristics, are capable of avoiding interference and ensuring robustness in industrial environments. However, none of the selected MACs are capable of ensuring robustness without comprising time requirements, since interference is avoided but not in a bounded time. On the other hand, the MAC proposed in this thesis is capable of avoiding interference ensuring time and robustness requirements at the same time. This MAC is therefore suitable for IWSAN applications. To ensure a deterministic behavior against interference, a novel handoff algorithm, which detects interference and hops to another channel, has been proposed. This algorithm has been designed to be used jointly with one of the evaluated MACs. The detection of the interference and the hop to another channel is done in a bounded time, because the proposed algorithm detects interference while the system is transmitting. The performance of this proposal is evaluated using Network Calculus and OPNET simulations, and the results are compared with the system without the proposed handoff algorithm. The comparison of the results shows how the evaluated MAC is only capable of ensuring both time and robustness requirements when the proposed handoff strategy is used. Moreover, the spectrum sensing algorithm used to obtain information about the environment is delved and its performance is measured through MATLAB simulations. An energy detector has been chosen due to its simplicity. Also, a cyclostationary Modulation Classifier is presented and a simplification has been carried out allowing its implementation on real hardware. The Modulation Classifier is capable of distinguishing between OFDM, QPSK and GFSK signals. The performance of the algorithm is presented in this thesis for different signals and for different receiver impairments such as frequency offset, DC offset and I/Q imbalance. Finally, a cognitive platform to validate the spectrum sensing algorithms is presented. This platform has been designed using a Xilinx Virtex 6 FPGA by a working group composed of researchers from IK4-Ikerlan and Mondragon Unibertsitatea. The platform, which uses both spectrum sensing algorithms, is an Ethernet-to-RF bridge. It has been designed to replace an Ethernet wired link by a wireless one for IWSAN applications. The proposed platform ensures a reliable communication link against interference. In the proposed implementation, the energy detector is used by the transmitter in order to find a free channel to transmit data, whereas the modulation classifier is used by the receiver in order to distinguish between the signal transmitted by the RF-Ethernet bridge and other signals. In this way the receiver can find the channel where the transmitter is carrying out the communication.En esta tesis se propone una MAC basada en el paradigma de la Radio Cognitiva (RC) para redes de sensores y actuadores inalámbricos industriales. Estas redes se suelen utilizar para aplicaciones de control en lazo cerrado, que exigen requisitos estrictos de tiempo y robustez. Para no poner en peligro la salud de las personas o la maquinaria es necesario que la red asegure una baja latencia y una tasa baja de errores. Además, al trabajar en ambientes industriales como fábricas o transportes (trenes, aviones, etc.), estas redes tienen que hacer frente a canales con mucho desvanecimiento por multitrayecto y efecto sombra debido a las superficies metálicas. También es común en estos entornos que haya interferencias de otros sistemas de comunicaciones o de la propia maquinaria industrial. La MAC propuesta en esta tesis es capaz de asegurar los requisitos temporales y de robustez demandados trabajando en este tipo de entornos. En el proceso de diseño de la MAC basada en RC para redes de sensores y actuadores inalámbricos industriales, se ha llevado a cabo una comparación de diferentes MACs diseñadas para estas redes. Se han evaluado tanto MACs basadas en RC como no basadas en ella, estableciendo las ventajas de la RC para estas aplicaciones. La evaluación se ha llevado a cabo haciendo un estudio teórico mediante Network Calculus, cuyos resultados se han validado mediante simulaciones en OPNET. Los resultados muestran como la RC es capaz de evitar interferencias y asegurar robustez en ambientes industriales. Sin embargo, ninguna de las MACs seleccionadas ha conseguido asegurar ambos requisitos, temporales y de robustez, al mismo tiempo; se puede evitar las interferencias pero no sin comprometer los requisitos temporales de la aplicación. Sin embargo, la MAC propuesta es capaz de evitar interferencias asegurando al mismo tiempo los requisitos temporales y de robustez. Por lo tanto, la MAC propuesta es apropiada para este tipo de redes. Para asegurar el comportamiento determinista del sistema, se ha propuesto un novedoso algoritmo de handoff que es capaz de detectar una interferencia y saltar a otro canal. Este algoritmo se ha diseñado para ser utilizado conjuntamente con una de las MACs previamente evaluadas. La detección de la interferencia y el salto a otro canal se hace en un tiempo determinado de tiempo, ya que es posible detectar interferencias mientras el sistema está transmitiendo. Su rendimiento se ha evaluado mediante Network Calculus y simulaciones en OPNET, y se ha comparado con los resultados obtenidos con la MAC cuando no se utiliza el esquema propuesto. De la comparación se deduce que el esquema de handoff añade a la MAC la capacidad de asegurar a la vez los requisitos temporales y de robustez. Además, en la tesis se explica el algoritmo de spectrum sensing que la MAC utiliza para obtener información del entorno, y su rendimiento se ha estudiado mediante simulaciones en MATLAB. Debido a su simplicidad, se ha optado por un detector de energía para este propósito. También se presenta un clasificador de modulaciones cicloestacionario. Este clasificador ha sido simplificado todo lo posible para posibilitar su implementación en hardware real. El clasificador de modulaciones es capaz de distinguir entre señales OFDM, QPSK y GFSK. Su rendimiento se detalla para diferentes señales y para diferentes deficiencias presentes en el receptor, como son offset de frecuencia, offset de continua o desequilibrios I/Q. Por último, se presenta una plataforma cognitiva que se ha utilizado para validar los algoritmos de spectrum sensing. Un grupo de trabajo compuesto por investigadores de IK4-Ikerlan y Mondragon Unibertsitatea ha diseñado esta plataforma sobre una FPGA Virtex 6 de Xilinx. La plataforma, que utiliza los dos algoritmos de spectrum sensing, es un puente Ethernet-RF. Su objetivo es reemplazar un enlace cableado de Ethernet por uno inalámbrico para aplicaciones de redes de sensores y actuadores industriales. Gracias a los algoritmos de spectrum sensing, la plataforma es capaz de asegurar un enlace robusto ante interferencias. El detector de energía se utiliza en el transmisor para encontrar los posibles canales libres donde transmitir la información. Mientras que el clasificador de modulaciones se utiliza en el receptor para distinguir entre la señal del transmisor y otras posibles señales. Esto permite al receptor saber en qué canal de todos los posibles está el transmisor.Tesi honetan proposatzen da Irrati Kognitiboaren (IK) paradigman oinarritutako MAC bat industriako haririk gabeko sentsore eta eragingailuen sareetarako. Sare horiek begizta itxiko kontrol aplikazioetarako erabili ohi dira, denbora eta sendotasunaren aldetik baldintza ugari eskatzen dute eta. Pertsonen osasuna eta makinak arriskuan ez jartzeko, beharrezkoa da sareak latentzia eta hutsegite tasa txikiak bermatzea. Gainera, industri giroetan lan egiteko direnez, esaterako, lantegietan edo garraioetan (trenak, hegazkinak, etab.), sare horiek gai izan behar dira gainazal metalikoek eragiten dituzten ibilbide aniztunaren eta itzal efektuaren ondorioz asko barreiatzen diren kanalei aurre egiteko. Ingurune horien ohiko ezaugarria da, baita ere, beste komunikazio sistema batzuen edo industriako makinen beraien interferentziak egotea. Tesi honetan proposatzen den MACa gai da honelako inguruetan lan egiteko denborari eta sendotasunari dagokienez eskatzen dituen baldintzak ziurtatzeko. IKan oinarrituta haririk gabeko sentsore eta eragingailu industrialen sareetarako MACa diseinatzeko prozesuan, horrelako sareetarako aurkeztu diren hainbat MAC alderatu dira. IKan oinarritutako MACak zein bestelakoak ebaluatu dira, eta IKak aplikazio hauetarako dituen abantailak ezarri dira. Ebaluaziorako Network Calculus erabili da, zeinaren bidez azterketa teoriko bat egin baita, eta azterketaren emaitzak OPNETen simulazioak eginda baliozkotu dira. Emaitzek erakusten dutenez, IKa gai da industriako inguruneetan interferentziak ekidin eta sendotasuna ziurtatzeko. Halere, aukeratu diren MACetatik batek ere ez du lortu baldintza biak, denborari buruzkoa zein sendotasunari buruzkoa, aldi berean ziurtatzea; interferentziak ekidin daitezke, baina ez aplikazioaren denborari buruzko baldintzak arriskuan jarri gabe. Dena dela, proposatu den MACak portaera determinista bat ziurtatzen du interferentziekiko, eta aldi berean denborari eta sendotasunari buruzko baldintzak ere ziurtatzen ditu. Hortaz, MAC hau egokia da sare mota honetarako. Sistemaren portaera determinista ziurtatzeko, handoff algoritmo berritzailea proposatu da, zeina interferentzia bat antzeman eta beste kanal bat igarotzeko gai den. Algoritmo hori aurretik ebaluatutakoa MACetako batekin batera erabiltzeko diseinatu da. Interferentzia antzeman eta beste kanal batera salto egitea denbora jakin batean egiten da, izan ere, sistema transmititzen ari dela antzeman baitaitezke interferentziak. Network Calculusen bitartez eta OPNETeko simulazioen bitartez ebaluatu da sistemaren errendimendua, eta proposatutako eskema erabiltzen ez denean MACak ematen dituen emaitzekin alderatu da. Alderaketa horretatik ondorioztatzen denez, handoff eskemak denborari eta sendotasunari buruzko baldintzak batera ziurtatzeko ahalmena ematen dio MACari. Gainera, tesiak azaltzen du inguruneari buruzko informazioa eskuratzeko MACak erabiltzen duen spectrum sensing algoritmoa, eta bere errendimendua MATLABen simulazioak eginez aztertu da. Bere sinpletasuna dela eta, energia detektore bat aukeratu da asmo honetarako. Modulazio sailkatzaile zikloegonkor bat ere aurkezten da. Sailkapen hori ahalik eta gehien sinplifikatu da benetako hardwarean inplementatu ahal izateko. Modulazioen sailkatzaileak OFDM, QPSK eta GFSK seinaleak bereizi ditzake. Bere errendimendua hargailuan dauden seinale eta akats desberdinetarako zehazten da, esaterako maiztasunaren offset-a,zuzenaren offset-a edo I/Q desorekak. Bukatzeko, spectrum sensing-eko algoritmoak baliozkotzeko erabili den plataforma kognitibo bat aurkezten da. IK4-Ikerlaneko eta Mondragon Unibertsitateko ikertzailez osatutako lantalde batek diseinatu du plataforma hori Xilinxen Virtex 6 FPGA baten oinarrutz. Plataformak spectrum sensing-eko bi algoritmo erabiltzen ditu eta Ethernet-RF zubi bat da. Bere helburua da Etherneteko kable bidezko lotura bat haririk gabeko batekin ordeztea industriako sentsore eta eragingailuen sareetan aplikatzeko. Spectrum sensing-eko algoritmoei esker, plataformak lotura sendoa bermatu dezake interferentziak gertatzen direnean. Energia detektorea transmisorean erabiltzen da informazioa transmititzeko erabilgarri egon daitezkeen kanalak aurkitzeko. Modulazioen sailkatzailea, berriz, hargailuan erabiltzen da transmisorearen seinalea eta egon daitezkeen beste seinale batzuk bereizteko. Horri esker, hargailuak badaki posible diren kanal guztietatik non dagoen transmisorea

    Performance analysis of energy detection algorithm in cognitive radio

    Get PDF
    Rapid growth of wireless applications and services has made it essential to address spectrum scarcity problem. if we were scan a portion of radio spectrum including revenue-rich urban areas, we find that some frequency bands in the spectrum are largely unoccupied most of the time, some other frequency bands are partially occupied and the remaining frequency bands are heavily used. This leads to a underutilization of radio spectrum, Cognitive radio (CR) technology attempts alleviate this problem through improved utilization of radio spectrum. Cognitive radio is a form of wireless communication in which a transceiver can intelligently detect which RF communication channels are in use and which are not, and instantly move into vacant channels while avoiding occupied ones. This optimizes the use of available radio-frequency (RF) spectrum while minimizing interference to other users. There two types of cognitive radio, full cognitive radio and spectrum-sensing cognitive radio. Full cognitive radio takes into account all parameters that a wireless node or network can be aware of. Spectrum-sensing cognitive radio is used to detect channels in the radio frequency spectrum. Spectrum sensing is a fundamental requirement in cognitive radio network. Many signal detection techniques can be used in spectrum sensing so as to enhance the detection probability. In this thesis we analyze the performance of energy detector spectrum sensing algorithm in cognitive radio. By increasing the some parameters, the performance of algorithm can be improved as shown in the simulation results. In cognitive radio systems, secondary users should determine correctly whether the primary user is absent or not in a certain spectrum within a short detection period. Spectrum detection schemes based on fixed threshold are sensitive to noise uncertainty, the energy detection based on dynamic threshold can improve the antagonism of noise uncertainty; get a good performance of detection while without increasing the computer complexity uncertainty and improves detection performance for schemes are sensitive to noise uncertainty in lower signal-to-noise and large noise uncertainty environments

    Spectrum measurement, sensing, analysis and simulation in the context of cognitive radio

    Get PDF
    The radio frequency (RF) spectrum is a scarce natural resource, currently regulated locally by national agencies. Spectrum has been assigned to different services and it is very difficult for emerging wireless technologies to gain access due to rigid spectmm policy and heavy opportunity cost. Current spectrum management by licensing causes artificial spectrum scarcity. Spectrum monitoring shows that many frequencies and times are unused. Dynamic spectrum access (DSA) is a potential solution to low spectrum efficiency. In DSA, an unlicensed user opportunistically uses vacant licensed spectrum with the help of cognitive radio. Cognitive radio is a key enabling technology for DSA. In a cognitive radio system, an unlicensed Secondary User (SU) identifies vacant licensed spectrum allocated to a Primary User (PU) and uses it without harmful interference to the PU. Cognitive radio increases spectrum usage efficiency while protecting legacy-licensed systems. The purpose of this thesis is to bring together a group of CR concepts and explore how we can make the transition from conventional radio to cognitive radio. Specific goals of the thesis are firstly the measurement of the radio spectrum to understand the current spectrum usage in the Humber region, UK in the context of cognitive radio. Secondly, to characterise the performance of cyclostationary feature detectors through theoretical analysis, hardware implementation, and real-time performance measurements. Thirdly, to mitigate the effect of degradation due to multipath fading and shadowing, the use of -wideband cooperative sensing techniques using adaptive sensing technique and multi-bit soft decision is proposed, which it is believed will introduce more spectral opportunities over wider frequency ranges and achieve higher opportunistic aggregate throughput.Understanding spectrum usage is the first step toward the future deployment of cognitive radio systems. Several spectrum usage measurement campaigns have been performed, mainly in the USA and Europe. These studies show locality and time dependence. In the first part of this thesis a spectrum usage measurement campaign in the Humber region, is reported. Spectrum usage patterns are identified and noise is characterised. A significant amount of spectrum was shown to be underutilized and available for the secondary use. The second part addresses the question: how can you tell if a spectrum channel is being used? Two spectrum sensing techniques are evaluated: Energy Detection and Cyclostationary Feature Detection. The performance of these techniques is compared using the measurements performed in the second part of the thesis. Cyclostationary feature detection is shown to be more robust to noise. The final part of the thesis considers the identification of vacant channels by combining spectrum measurements from multiple locations, known as cooperative sensing. Wideband cooperative sensing is proposed using multi resolution spectrum sensing (MRSS) with a multi-bit decision technique. Next, a two-stage adaptive system with cooperative wideband sensing is proposed based on the combination of energy detection and cyclostationary feature detection. Simulations using the system above indicate that the two-stage adaptive sensing cooperative wideband outperforms single site detection in terms of detection success and mean detection time in the context of wideband cooperative sensing

    Cognitive Radio Communications for Vehicular Technology – Wavelet Applications

    Get PDF
    Wireless communications are nowadays a dominant part of our lives: from domotics, through industrial applications and up to infomobility services. The key to the co-existence of wireless systems operating in closely located or even overlapping areas, is sharing of the spectral resource. The optimization of this resource is the main driving force behind the emerging changes in the policies for radio resources allocation. The current approach in spectrum usage specifies fixed frequency bands and transmission power limits for each radio transmitting system. This approach leads to a very low medium utilization factor for some frequency bands, caused by inefficient service allocation over vast geographical areas (radiomobile, radio and TV broadcasting, WiMAX) and also by the usage of large guard bands, obsolete now due to technological progress. A more flexible use of the spectral resource implies that the radio transceivers have the ability to monitor their radio environment and to adapt at specific transmission conditions. If this concept is supplemented with learning and decision capabilities, we refer to the Cognitive Radio (CR) paradigm. Some of the characteristics of a CR include localization, monitoring of the spectrum usage, frequency changing, transmission power control and, finally, the capacity of dynamically altering all these parameters (Haykin, 2005). This new cognitive approach is expected to have an important impact on the future regulations and spectrum policies. The dynamic access at the spectral resource is of extreme interest both for the scientific community as, considering the continuous request for wideband services, for the development of wireless technologies. From this point of view, a fundamental role is played by the Institute of Electrical and Electronic Engineers (IEEE) which in 2007 formed the Standards Coordinating Committee (SCC) 41 on Dynamic Spectrum Access Networks (DySPAN) having as main objective a standard for dynamic access wireless networks. Still within the IEEE frame, the 802.22 initiative defines a new WRAN (Wireless Regional Area Network) interface for wideband access based on cognitive radio techniques in the TV guard bands (the so-called “white spaces”). Coupled with the advantages and flexibility of CR systems and technologies, there is an ever-growing interest around the world in exploiting CR-enabled communications in vehicular and transportation environments. The integration of CR devices and cognitive radio networks into vehicles and associated infrastructures can lead to intelligent interactions with the transportation system, among vehicles, and even among radios within vehicles. Thus, improvements can be achieved in radio resource management and energy efficiency, road traffic management, network management, vehicular diagnostics, road traffic awareness for applications such as route planning, mobile commerce, and much more. Still open within the framework of dynamic and distributed access to the radio resource are the methods for monitoring the radio environment (the so-called “spectrum sensing”) and the transceiver technology to be used on the radio channels. A CR system works on a opportunistic basis searching for unused frequency bands called “white spaces” within the radio frequency spectrum with the intent to operate invisibly and without disturbing the primary users (PU) holding a license for one or more frequency bands. Spectrum sensing, that is, the fast and reliable detection of the PU’s even in the presence of in-band noise, is still a very complex problem with a decisive impact on the functionalities and capabilities of the CRs. The spectrum sensing techniques can be classified in two types: local and cooperative (distributed). The local techniques are performed by single devices exploiting the spectrum occupancy information in their spatial neighbourhood and can be divided into three categories (Budiarjo et al., 2008): "matched filter" (detection of pilot signals, preambles, etc.), "energy detection” (signal strength analysis) and “feature detection" (classification of signals according to their characteristics). Also, a combination of local techniques in a multi-stage design can be used to improve the sensing accuracy (Maleki et al., 2010). Nevertheless, the above-mentioned techniques are mostly inefficient for signals with reduced power or affected by phenomena typical for vehicular technology applications, such as shadowing and multi-path fading. To overcome such problems, cooperatives techniques can be used. Cooperative sensing is based on the aggregation of the spectrum data detected by multiple nodes using cognitive convergence algorithms in order to avoid the channel impairment problems that can lead to false detections. (Sanna et al., 2009). Within the energy detection method, a particular attention needs to be paid to the properties of the packets wavelet transformation for subband analysis, which, according to the literature, seems to be a feasible alternative to the classical FFT-based energy detection. Vehicular applications are in most cases characterized by the need of coping with fast changes in the radio environment, which lead, in this specific case of cognitive communication, to constrains in terms of short execution time of the spectrum sensing operations. From this point of view, the computational complexity of the wavelet packets method is of the same order of the state-of-the-art FFT algorithms, but the number of mathematical operations is lower using IIR polyphase filters (Murroni et al., 2010). In our work we are investigating the use of the wavelet packets for energy detection spectrum sensing operations based on the consideration that they have a finite duration and are self- and mutually-orthogonal at integer multiples of dyadic intervals. Hence, they are suitable for subband division and analysis: a generic signal can be then decomposed on the wavelet packet basis and represented as a collection of coefficients belonging to orthogonal subbands. Therefore, the total power of the signal can be evaluated as sum of the contributions of each subband, which can be separately computed in the wavelet domain. Furthermore, the wavelet packets can be used also for the feature detection spectrum sensing, using statistical parameters such as moments and medians. We concentrate in our research on both applications of the wavelet packets to the spectrum sensing operations, investigating their efficiency in terms of reliability and execution time, applied specifically to the needs of vehicular technology and transportation environments. The other key issue for the development of the previously mentioned standard is the choice of an adaptive/multicarrier modulation as basic candidate for data transmission, having as the most known representative the Orthogonal Frequency Division Multiplexing (OFDM) modulation. OFDM-like schemes are mature enough to be chosen as a core technology for dynamic access wireless networks. At the same time, the potentialities in terms of optimization for this specific purpose are not yet thoroughly investigated. Particularly, the Wavelet Packet Division Multiplexing (WPDM) modulation method, already known for about ten years to the scientific community, is a suitable candidate to satisfy the requirements on physical level for a dynamic access network (Wong et al., 1997): WPDM has already proven to be able to overcome some of the OFDM limits (limited spectral efficiency, problems with temporal synchronization especially in channels affected by fading) and is at the same time based on use of the same wavelet packets employed for subband analysis used for spectrum sensing operations . Our research investigates the use of the WPDM for cognitive radio purposes, combined with the wavelet approach for spectrum sensing, for offering a complete, wavelet-based solution for cognitive application focused on the problematic of vehicular communication (channel impairments, high relative velocity of the communication peers etc.)

    Cognitive radio networks : quality of service considerations and enhancements

    Get PDF
    The explosive growth of wireless and mobile networks, such as the Internet of Things and 5G, has led to a massive number of devices that primarily use wireless channels within a limited range of the radio frequency spectrum (RFS). The use of RFS is heavily regulated, both nationally and internationally, and is divided into licensed and unlicensed bands. While many of the licensed wireless bands are underutilised, useable unlicensed bands are usually overcrowded, making the efficient use of RFS one of the critical challenges faced by future wireless communication technologies. The cognitive radio (CR) concept is proposed as a promising solution for the underutilisation of useful RFS bands. Fundamentally, CR technology is based on determining the unoccupied licensed RFS bands, called spectrum white spaces or holes, and accessing them to achieve better RFS utilisation and transmission propagation. The holes are the frequencies unused by the licensed user, or primary user (PU). Based on spectrum sensing, a CR node, or secondary user (SU), senses the surrounding spectrum periodically to detect any potential PU transmission in the current channel and to identify the available spectrum holes. Under current RFS regulations, SUs may use spectrum holes as long as their transmissions do not interfere with those of the PU. However, effective spectrum sensing can introduce overheads to a CR node operation. Such overheads affect the quality of service (QoS) of the running applications. Reducing the sensing impact on the QoS is one of the key challenges to adopting CR technology, and more studies of QoS issues related to implementing CR features are needed. This thesis aims to address these QoS issues in CR while considered the enhancement of RFS utilisation. This study concentrates on the spectrum sensing function, among other CR functions, because of its major impact on QoS and spectrum utilisation. Several spectrum sensing methods are reviewed to identify potential research gaps in analysing and addressing related QoS implications. It has been found that none of the well-known sensing techniques is suitable for all the diverse QoS requirements and RFS conditions: in fact, higher accuracy sensing methods cause a significant QoS degradation, as illustrated by several simulations in this work. For instance, QoS degradation caused by high-accuracy sensing has not yet been addressed in the IEEE 802.11e QoS mechanism used in the proposed CR standard, IEEE 802.11af (or White-Fi). This study finds that most of the strategies proposed to conduct sensing are based on a fixed sensing method that is not adaptable to the changeable nature of QoS requirements. In contrast, this work confirms the necessity of using various sensing techniques and parameters during a CR node operation for better performance

    Performance Evaluation of Cognitive Radio Spectrum Sensing Techniques through a Rayleigh Fading Channel

    Get PDF
    In recent years, there has been a steep rise in the demand for bandwidth due to a sharp increase in the number of devices connected to the wireless network. Coupled with the expected commercialization of 5G services and massive adoption of IoT, the upsurge in the number of devices connected to the wireless network will continue to grow exponentially into billions of devices. To accommodate the associated demand for wireless spectrum as we step into this new era of wireless connectivity, traditional methods of spectrum utilization based on fixed and static allocation are no longer adequate. New innovative forms that support dynamic assignment of spectrum space on as-per-need basis are now paramount. Cognitive radio has emerged as one of the most promising techniques that allow flexible usage of the scarce spectrum resource. Cognitive radio allows unlicensed users to opportunistically access spectrum bands assigned to primary users when these spectrum bands are idle. As such, cognitive radio reduces the gap between spectrum scarcity and spectrum underutilization. The most critical function of cognitive radio is spectrum sensing, which establishes the occupation status of a spectrum band, paving the way for a cognitive radio to initiate transmission if the band is idle. The most common and widely used methods for spectrum sensing are energy detection, matched filter detection, cyclostationary feature detection and cooperative based spectrum sensing. This dissertation investigates the performance of these spectrum-sensing techniques through a Rayleigh fading channel. In a wireless environment, a Rayleigh fading channel models the propagation of a wireless signal where there is no dominant line of sight between the transmitter and receiver. Understanding the performance of spectrum sensing techniques in a real world simulation environment is important for both industry and academia, as this allows for the optimal design of cognitive radio systems capable of efficiently executing their function. MATLAB software provides an experimental platform for the fusion of various Rayleigh fading channel parameters that mimic real world wireless channel characteristics. In this project, a MATLAB environment test bed is used to simulate the performance for each spectrum sensing technique across a range of signal-to-noise values, through a Rayleigh fading channel with a given set of parameters for channel delay, channel gain and Doppler shift. Simulation results are presented as plots for probability of detection versus signal-tonoise ratio, receiver operating characteristics (ROC) curves and complementary ROC curves. A detailed performance analysis for each spectrum sensing technique then follows, with comparisons done to determine the technique that offers the best relative performance

    Spectrum Efficient Cognitive Radio Sensor Network for IoT with Low Energy Consumption

    Get PDF
    Cognitive Radio Sensor Networks (CRSNs) have emerged as a promising solution for efficient utilization of the limited frequency spectrum. One of the key challenges in CRSNs is achieving spectrum efficiency by avoiding interference and maximizing the use of the available spectrum. Particle Swarm Optimization (PSO) techniques have been widely used to optimize the spectrum allocation and improve the spectrum efficiency of CRSNs. In this paper the study provides an overview of the research on spectrum efficiency in CRSNs using PSO techniques and also discussed the key parameters that affect the spectrum efficiency, such as the swarm size, sensor's threshold and maximum number of iterations and highlights the importance of identifying the optimal combination of these parameters. This paper also emphasizes the need for further research and development in this area to improve the efficiency and effectiveness of PSO-based optimization techniques for CRSNs and to adapt them to various real-world scenarios. Achieving spectrum efficiency in CRSNs is critical for enabling effective wireless communication systems and improving the overall utilization of the available frequency spectrum
    corecore