883 research outputs found

    Interior Point Cutting Plane Methods in Integer Programming

    Get PDF
    This thesis presents novel approaches that use interior point concepts in solving mixed integer programs. Particularly, we use the analytic center cutting plane method to improve three of the main components of the branch-and-bound algorithm: cutting planes, heuristics, and branching. First, we present an interior point branch-and-cut algorithm for structured integer programs based on Benders decomposition. We explore using Benders decomposition in a branch-and-cut framework where the Benders cuts are generated using the analytic center cutting plane method. The algorithm is tested on two classes of problems: the capacitated facility location problem and the multicommodity capacitated fixed charge network design problem. For the capacitated facility location problem, the proposed approach was on average 2.5 times faster than Benders-branch-and-cut and 11 times faster than classical Benders decomposition. For the multicommodity capacitated fixed charge network design problem, the proposed approach was 4 times faster than Benders-branch-and-cut while classical Benders decomposition failed to solve the majority of the tested instances. Second, we present a heuristic algorithm for mixed integer programs based on interior points. As integer solutions are typically in the interior, we use the analytic center cutting plane method to search for integer feasible points within the interior of the feasible set. The algorithm searches along two line segments that connect the weighted analytic center and two extreme points of the linear programming relaxation. Candidate points are rounded and tested for feasibility. Cuts aimed to improve the objective function and restore feasibility are then added to displace the weighted analytic center until a feasible integer solution is found. The algorithm is composed of three phases. In the first, points along the two line segments are rounded gradually to find integer feasible solutions. Then in an attempt to improve the quality of the solutions, the cut related to the bound constraint is updated and a new weighted analytic center is found. Upon failing to find a feasible integer solution, a second phase is started where cuts related to the violated feasibility constraints are added. As a last resort, the algorithm solves a minimum distance problem in a third phase. For all the tested instances, the algorithm finds good quality feasible solutions in the first two phases and the third phase is never called. Finally, we present a new approach to generate good general branching constraints based on the shape of the polyhedron. Our approach is based on approximating the polyhedron using an inscribed ellipsoid. We use Dikin's ellipsoid which we calculate using the analytic center. We propose to use the disjunction that has a minimum width on the ellipsoid. We use the fact that the width of the ellipsoid in a given direction has a closed form solution in order to formulate a quadratic problem whose optimal solution is a thin direction of the ellipsoid. While solving a quadratic problem at each node of the branch-and-bound tree is impractical, we use a local search heuristic for its solution. Computational testing conducted on hard integer problems from MIPLIB and CORAL showed that the proposed approach outperforms classical branching

    A cutting-plane approach for large-scale capacitated multi-period facility location using a specialized interior-point method

    Get PDF
    We propose a cutting-plane approach (namely, Benders decomposition) for a class of capacitated multi-period facility location problems. The novelty of this approach lies on the use of a specialized interior-point method for solving the Benders subproblems. The primal block-angular structure of the resulting linear optimization problems is exploited by the interior-point method, allowing the (either exact or inexact) efficient solution of large instances. The effect of different modeling conditions and problem specifications on the computational performance are also investigated both theoretically and empirically, providing a deeper understanding of the significant factors influencing the overall efficiency of the cutting-plane method. This approach allowed the solution of instances of up to 200 potential locations, one million customers and three periods, resulting in mixed integer linear optimization problems of up to 600 binary and 600 millions of continuous variables. Those problems were solved by the specialized approach in less than one hour, outperforming other stateof- the-art methods, which exhausted the (144 Gigabytes of) available memory in the largest instances.Preprin

    Valid Inequalities and Facets of the Capacitated Plant Location Problem

    Get PDF
    Recently, several successful applications of strong cutting plane methods to combinatorial optimization problems have renewed interest in cutting plane methods, and polyhedral characterizations, of integer programming problems.In this paper, we investigate the polyhedral structure of the capacitated plant location problem. Our purpose is to identify facets and valid inequalities for a wide range of capacitated fixed charge problems that contain this prototype problem as a substructure.The first part of the paper introduces a family of facets for a version of the capacitated plant location problem with constant capacity K for all plants. These facet inequalities depend on K and thus differ fundamentally from the valid inequalities for the uncapacitated version of the problem. We also introduce a second formulation for a model with indivisible customer demand and show that it is equivalent to a vertex packing problem on a derived graph. We identify facets and valid inequalities for this version of the problem by applying known results for the vertex packing polytope

    A heuristic approach for big bucket multi-level production planning problems

    Get PDF
    Multi-level production planning problems in which multiple items compete for the same resources frequently occur in practice, yet remain daunting in their difficulty to solve. In this paper, we propose a heuristic framework that can generate high quality feasible solutions quickly for various kinds of lot-sizing problems. In addition, unlike many other heuristics, it generates high quality lower bounds using strong formulations, and its simple scheme allows it to be easily implemented in the Xpress-Mosel modeling language. Extensive computational results from widely used test sets that include a variety of problems demonstrate the efficiency of the heuristic, particularly for challenging problems

    On the equivalence of strong formulations for capacitated multi-level lot sizing problems with setup times

    Get PDF
    Several mixed integer programming formulations have been proposed for modeling capacitated multi-level lot sizing problems with setup times. These formulations include the so-called facility location formulation, the shortest route formulation, and the inventory and lot sizing formulation with (l,S) inequalities. In this paper, we demonstrate the equivalence of these formulations when the integrality requirement is relaxed for any subset of binary setup decision variables. This equivalence has significant implications for decomposition-based methods since same optimal solution values are obtained no matter which formulation is used. In particular, we discuss the relax-and-fix method, a decomposition-based heuristic used for the efficient solution of hard lot sizing problems. Computational tests allow us to compare the effectiveness of different formulations using benchmark problems. The choice of formulation directly affects the required computational effort, and our results therefore provide guidelines on choosing an effective formulation during the development of heuristic-based solution procedures

    Facets and Algorithms for Capacitated Lot Sizing

    Get PDF
    The dynamic economic lot sizing model, which lies at the core of numerous production planning applications, is one of the most highly studied models in all of operations research. And yet, capacitated multi-item versions of this problem remain computationally elusive. We study the polyhedral structure of an integer programming formulation of a single-item capacitated version of this problem, and use these results to develop solution methods for multi-item applications. In particular, we introduce a set of valid inequalities for the problem and show that they define facets of the underlying integer programming polyhedron. Computational results on several single and multiple product examples show that these inequalities can be used quite effectively to develop an efficient cutting plane/branch and bound procedure. Moreover, our results show that in many instances adding certain of these inequalities a priori to the problem formulation, and avoiding the generation of cutting planes, can be equally effective

    Polyhedral techniques in combinatorial optimization II: applications and computations

    Get PDF
    The polyhedral approach is one of the most powerful techniques available for solving hard combinatorial optimization problems. The main idea behind the technique is to consider the linear relaxation of the integer combinatorial optimization problem, and try to iteratively strengthen the linear formulation by adding violated strong valid inequalities, i.e., inequalities that are violated by the current fractional solution but satisfied by all feasible solutions, and that define high-dimensional faces, preferably facets, of the convex hull of feasible solutions. If we have the complete description of the convex hull of feasible solutions at hand all extreme points of this formulation are integral, which means that we can solve the problem as a linear programming problem. Linear programming problems are known to be computationally easy. In Part 1 of this article we discuss theoretical aspects of polyhedral techniques. Here we will mainly concentrate on the computational aspects. In particular we discuss how polyhedral results are used in cutting plane algorithms. We also consider a few theoretical issues not treated in Part 1, such as techniques for proving that a certain inequality is facet defining, and that a certain linear formulation gives a complete description of the convex hull of feasible solutions. We conclude the article by briefly mentioning some alternative techniques for solving combinatorial optimization problems

    Polyhedral techniques in combinatorial optimization II: computations

    Get PDF
    Combinatorial optimization problems appear in many disciplines ranging from management and logistics to mathematics, physics, and chemistry. These problems are usually relatively easy to formulate mathematically, but most of them are computationally hard due to the restriction that a subset of the variables have to take integral values. During the last two decades there has been a remarkable progress in techniques based on the polyhedral description of combinatorial problems. leading to a large increase in the size of several problem types that can be solved. The basic idea behind polyhedral techniques is to derive a good linear formulation of the set of solutions by identifying linear inequalities that can be proved to be necessary in the description of the convex hull of feasible solutions. Ideally we can then solve the problem as a linear programming problem, which can be done efficiently. The purpose of this manuscript is to give an overview of the developments in polyhedral theory, starting with the pioneering work by Dantzig, Fulkerson and Johnson on the traveling salesman problem, and by Gomory on integer programming. We also present some modern applications, and computational experience

    A computational analysis of lower bounds for big bucket production planning problems

    Get PDF
    In this paper, we analyze a variety of approaches to obtain lower bounds for multi-level production planning problems with big bucket capacities, i.e., problems in which multiple items compete for the same resources. We give an extensive survey of both known and new methods, and also establish relationships between some of these methods that, to our knowledge, have not been presented before. As will be highlighted, understanding the substructures of difficult problems provide crucial insights on why these problems are hard to solve, and this is addressed by a thorough analysis in the paper. We conclude with computational results on a variety of widely used test sets, and a discussion of future research
    corecore