815 research outputs found

    The NxD-BMAP/G/1 queueing model : queue contents and delay analysis

    Get PDF
    We consider a single-server discrete-time queueing system with N sources, where each source is modelled as a correlated Markovian customer arrival process, and the customer service times are generally distributed. We focus on the analysis of the number of customers in the queue, the amount of work in the queue, and the customer delay. For each of these quantities, we will derive an expression for their steady-state probability generating function, and from these results, we derive closed-form expressions for key performance measures such as their mean value, variance, and tail distribution. A lot of emphasis is put on finding closed-form expressions for these quantities that reduce all numerical calculations to an absolute minimum

    Detecting Markov Chain Instability: A Monte Carlo Approach

    Get PDF
    We devise a Monte Carlo based method for detecting whether a non-negative Markov chain is stable for a given set of parameter values. More precisely, for a given subset of the parameter space, we develop an algorithm that is capable of deciding whether the set has a subset of positive Lebesgue measure for which the Markov chain is unstable. The approach is based on a variant of simulated annealing, and consequently only mild assumptions are needed to obtain performance guarantees. The theoretical underpinnings of our algorithm are based on a result stating that the stability of a set of parameters can be phrased in terms of the stability of a single Markov chain that searches the set for unstable parameters. Our framework leads to a procedure that is capable of performing statistically rigorous tests for instability, which has been extensively tested using several examples of standard and non-standard queueing networks

    Monotonicity and error bounds for networks of Erlang loss queues

    Get PDF
    Networks of Erlang loss queues naturally arise when modelling finite communication systems without delays, among which, most notably are (i) classical circuit switch telephone networks (loss networks) and (ii) present-day wireless mobile networks. Performance measures of interest such as loss probabilities or throughputs can be obtained from the steady state distribution. However, while this steady state distribution has a closed product form expression in the first case (loss networks), it does not have one in the second case due to blocked (and lost) handovers. Product form approximations are therefore suggested. These approximations are obtained by a combined modification of both the state space (by a hypercubic expansion) and the transition rates (by extra redial rates). It will be shown that these product form approximations lead to (1) upper bounds for loss probabilities and \ud (2) analytic error bounds for the accuracy of the approximation for various performance measures.\ud The proofs of these results rely upon both monotonicity results and an analytic error bound method as based on Markov reward theory. This combination and its technicalities are of interest by themselves. The technical conditions are worked out and verified for two specific applications:\ud (1)• pure loss networks as under (2)• GSM networks with fixed channel allocation as under.\ud The results are of practical interest for computational simplifications and, particularly, to guarantee that blocking probabilities do not exceed a given threshold such as for network dimensioning
    corecore