270 research outputs found

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    Fish tracking technology development. Phase 1 project definition desk study

    Get PDF
    The document reports on Phase 1 of a definition study to appraise the options to develop fish tracking equipment, in particular tags and data logging systems in order to improve the efficiency of the Environment Agency's tracking studies and to obtain a greater understanding of fish biology. Covered in this report are radio telemetry, audio telemetry, High Resolution Position Fixing, data storage and archival tags and other fish tracking systems such as biosonics

    Doctor of Philosophy

    Get PDF
    dissertationSince the late 1950s, scientists have been working toward realizing implantable devices that would directly monitor or even control the human body's internal activities. Sophisticated microsystems are used to improve our understanding of internal biological processes in animals and humans. The diversity of biomedical research dictates that microsystems must be developed and customized specifically for each new application. For advanced long-term experiments, a custom designed system-on-chip (SoC) is usually necessary to meet desired specifications. Custom SoCs, however, are often prohibitively expensive, preventing many new ideas from being explored. In this work, we have identified a set of sensors that are frequently used in biomedical research and developed a single-chip integrated microsystem that offers the most commonly used sensor interfaces, high computational power, and which requires minimum external components to operate. Included peripherals can also drive chemical reactions by setting the appropriate voltages or currents across electrodes. The SoC is highly modular and well suited for prototyping in and ex vivo experimental devices. The system runs from a primary or secondary battery that can be recharged via two inductively coupled coils. The SoC includes a 16-bit microprocessor with 32 kB of on chip SRAM. The digital core consumes 350 μW at 10 MHz and is capable of running at frequencies up to 200 MHz. The integrated microsystem has been fabricated in a 65 nm CMOS technology and the silicon has been fully tested. Integrated peripherals include two sigma-delta analog-to-digital converters, two 10-bit digital-to-analog converters, and a sleep mode timer. The system also includes a wireless ultra-wideband (UWB) transmitter. The fullydigital transmitter implementation occupies 68 x 68 μm2 of silicon area, consumes 0.72 μW static power, and achieves an energy efficiency of 19 pJ/pulse at 200 MHz pulse repetition frequency. An investigation of the suitability of the UWB technology for neural recording systems is also presented. Experimental data capturing the UWB signal transmission through an animal head are presented and a statistical model for large-scale signal fading is developed

    Implantable telemetry for small animals

    Get PDF
    A series of totally implantable telemetry devices for use in measuring deep body parameters in small animals were developed. Under a collaborative agreement with NASA, several of these systems; the continuous wave Doppler ultrasonic flowmeter, the multichannel telemetry system, and the inductively-powered dual channel cardiac pacer were evaluated in a series of ten mongrel dogs (15 to 20 kg.). These systems were used to measure ascending aortic and coronary blood flow, aortic pressure, and subcutaneous EKG

    A modular, programmable measurement system for physiological and spaceflight applications

    Get PDF
    The NASA-Ames Sensors 2000! Program has developed a small, compact, modular, programmable, sensor signal conditioning and measurement system, initially targeted for Life Sciences Spaceflight Programs. The system consists of a twelve-slot, multi-layer, distributed function backplane, a digital microcontroller/memory subsystem, conditioned and isolated power supplies, and six application-specific, physiological signal conditioners. Each signal condition is capable of being programmed for gains, offsets, calibration and operate modes, and, in some cases, selectable outputs and functional modes. Presently, the system has the capability for measuring ECG, EMG, EEG, Temperature, Respiration, Pressure, Force, and Acceleration parameters, in physiological ranges. The measurement system makes heavy use of surface-mount packaging technology, resulting in plug in modules sized 125x55 mm. The complete 12-slot system is contained within a volume of 220x150x70mm. The system's capabilities extend well beyond the specific objectives of NASA programs. Indeed, the potential commercial uses of the technology are virtually limitless. In addition to applications in medical and biomedical sensing, the system might also be used in process control situations, in clinical or research environments, in general instrumentation systems, factory processing, or any other applications where high quality measurements are required

    Biotelemetry system for Epilepsy Seizure Control

    Full text link

    Microsystems technology: objectives

    Get PDF
    This contribution focuses on the objectives of microsystems technology (MST). The reason for this is two fold. First of all, it should explain what MST actually is. This question is often posed and a simple answer is lacking, as a consequence of the diversity of subjects that are perceived as MST. The second reason is that a map of the somewhat chaotic field of MST is needed to identify sub-territories, for which standardization in terms of system modules an interconnections is feasible. To define the objectives a pragmatic approach has been followed. From the literature a selection of topics has been chosen and collected that are perceived as belonging to the field of MST by a large community of workers in the field (more than 250 references). In this way an overview has been created with `applications¿ and `generic issues¿ as the main characteristics

    Radiotelemetry systems for measuring body temperature

    Get PDF
    End of Project ReportThe objective of this study was to compare three methods of measuring body temperature in the bovine and examine their relationship with ambient temperature. The three methods used were (a) rumen bolus (b) tympanic logger and (c) rectal

    Coherent inductive communications link for biomedical applications

    Get PDF
    A two-way coherent inductive communications link between an external transceiver and an internal transceiver located in a biologically implanted programmable medical device. Digitally formatted command data and programming data is transmitted to the implanted medical device by frequency shift keying the inductive communications link. Internal transceiver is powered by the inductive field between internal and external transceivers. Digitally formatted data is transmitted to external transceiver by internal transceiver amplitude modulating inductive field. Immediate verification of the establishment of a reliable communications link is provided by determining existence of frequency lock and bit phase lock between internal and external transceivers
    corecore