175 research outputs found

    A 250 MHz 14 dB-NF 73 dB-Gain 82 dB-DR Analog Baseband Chain with Digital-Assisted DC-Offset Calibration for Ultra-Wideband

    Get PDF
    [[abstract]]A 250 MHz analog baseband chain for ultra-wideband was implemented in a 1.2 V 0.13 ¿ m CMOS process. The chip has an active area of 0.8 mm2. In the analog baseband, PGAs and filters are carried out by current-mode amplifiers to achieve wide bandwidth and wide dynamic range of gain, as well as low noise and high linearity. Besides, a current-mode Sallen-Key low-pass filter is adopted for effective rejection of out-of-band interferers. A 6 th-order Chebyshev low-pass filter realized in Gm-C topology is designed in the baseband chain for channel selection. Digitally-assisted DC-offset calibration improves second-order distortion of the entire chain. The design achieves a maximum gain of 73 dB and a dynamic range of 82 dB. Measured noise figure is 14 dB, an IIP3 of -6 dBV, and IIP2 of -5 dBV at the maximum gain mode. The analog baseband chain consumes 56.4 mA under supply of 1.2 V.[[incitationindex]]SCI[[incitationindex]]E

    Doctor of Philosophy

    Get PDF
    dissertationHigh speed wireless communication systems (e.g., long-term evolution (LTE), Wi-Fi) operate with high bandwidth and large peak-to-average power ratios (PAPRs). This is largely due to the use of orthogonal frequency division multiplexing (OFDM) modulation that is prevalent to maximize the spectral efficiency of the communication system. The power amplifier (PA) in the transmitter is the dominant energy consumer in the radio, largely because of the PAPR of the input signal. To reduce the energy consumption of the PA an amplifier that simultaneously achieves high efficiency and high linearity. Furthermore, to lower the cost for high volume production, it is desirable to achieve a complete System-on-Chip (SoC) integration. Linear amplifiers (e.g., Class-A, -B, -AB) are inefficient when amplifying signals with large PAPR that is associated by high peak-to-average modulation techniques such as LTE. OFDM. Switching amplifiers (e.g., Class-D, -E, -F) are very promising due to their high efficiency when compared to their linear amplifier counterparts. Linearization techniques for switching amplifiers have been intensively investigated due to their limited sensitivity to the input amplitude of the signal. Deep-submicron CMOS technology is mostly utilized for logic circuitry, and the Moore's law scaling of CMOS optimizes transistors to operate as high-speed and low-loss switches rather than high gain transistors. Hence, it is advantageous to use transistors in switching mode as switching amplifies and use high-speed digital logic circuitry to implement linearization systems and circuitry. In this work, several linearization architectures are investigated and demonstrated. An envelope elimination and restoration (EER) transmitter that comprises a class-E power amplifier and a 10-bit digital-to-analog converter (DAC) controlled current modulator is investigated. A pipelined switched-capacitor DAC is designed to control an open-loop transconductor that operates as a current modulator, modulating the amplitude of the current supplied to a class-E PA. Such a topology allows for increased filtering of the quantization noise that is problematic in most digital PAs (DPA). The proposed quadrature and multiphase architecture can avoid the bandwidth expansion and delay mismatch associated with polar PAs. The multiphase switched capacitor power amplifier (SCPA) was proposed after the quadrature SCPA and it significantly improves the power efficiency

    Four-element phased-array beamformers and a self-interference canceling full-duplex transciver in 130-nm SiGe for 5G applications at 26 GHz

    Get PDF
    This thesis is on the design of radio-frequency (RF) integrated front-end circuits for next generation 5G communication systems. The demand for higher data rates and lower latency in 5G networks can only be met using several new technologies including, but not limited to, mm-waves, massive-MIMO, and full-duplex. Use of mm-waves provides more bandwidth that is necessary for high data rates at the cost of increased attenuation in air. Massive-MIMO arrays are required to compensate for this increased path loss by providing beam steering and array gain. Furthermore, full duplex operation is desirable for improved spectrum efficiency and reduced latency. The difficulty of full duplex operation is the self-interference (SI) between transmit (TX) and receive (RX) paths. Conventional methods to suppress this interference utilize either bulky circulators, isolators, couplers or two separate antennas. These methods are not suitable for fully-integrated full-duplex massive-MIMO arrays. This thesis presents circuit and system level solutions to the issues summarized above, in the form of SiGe integrated circuits for 5G applications at 26 GHz. First, a full-duplex RF front-end architecture is proposed that is scalable to massive-MIMO arrays. It is based on blind, RF self-interference cancellation that is applicable to single/shared antenna front-ends. A high resolution RF vector modulator is developed, which is the key building block that empowers the full-duplex frontend architecture by achieving better than state-of-the-art 10-b monotonic phase control. This vector modulator is combined with linear-in-dB variable gain amplifiers and attenuators to realize a precision self-interference cancellation circuitry. Further, adaptive control of this SI canceler is made possible by including an on-chip low-power IQ downconverter. It correlates copies of transmitted and received signals and provides baseband/dc outputs that can be used to adaptively control the SI canceler. The solution comes at the cost of minimal additional circuitry, yet significantly eases linearity requirements of critical receiver blocks at RF/IF such as mixers and ADCs. Second, to complement the proposed full-duplex front-end architecture and to provide a more complete solution, high-performance beamformer ICs with 5-/6- b phase and 3-/4-b amplitude control capabilities are designed. Single-channel, separate transmitter and receiver beamformers are implemented targeting massive- MIMO mode of operation, and their four-channel versions are developed for phasedarray communication systems. Better than state-of-the-art noise performance is obtained in the RX beamformer channel, with a full-channel noise figure of 3.3 d

    Automatic Tuning of Silicon Photonics Millimeter-Wave Transceivers Building Blocks

    Get PDF
    Today, continuously growing wireless traffic have guided the progress in the wireless communication systems. Now, evolution towards next generation (5G) wireless communication systems are actively researched to accommodate expanding future data traffic. As one of the most promising candidates, integrating photonic devices in to the existing wireless system is considered to improve the performance of the systems. Emerging silicon photonic integrated circuits lead this integration more practically, and open new possibilities to the future communication systems. In this dissertation, the development of the electrical wireless communication systems are briefly explained. Also, development of the microwave photonics and silicon photonics are described to understand the possibility of the hybrid SiP integrated wireless communication systems. A limitation of the current electrical wireless systems are addressed, and hybrid integrated mm-wave silicon photonic receiver, and silicon photonic beamforming transmitter are proposed and analyzed in system level. In the proposed mm-wave silicon photonic receiver has 4th order pole-zero silicon photonic filter in the system. Photonic devices are vulnerable to the process and temperature variations. It requires manual calibration, which is expensive, time consuming, and prone to human errors. Therefore, precise automatic calibration solution with modified silicon photonic filter structure is proposed and demonstrated. This dissertation demonstrates fully automatic tuning of silicon photonic all-pass filter (APF)-based pole/zero filters using a monitor-based tuning method that calibrates the initial response by controlling each pole and zero individually via micro-heaters. The proposed tuning approach calibrates severely degraded initial responses to the designed elliptic filter shapes and allows for automatic bandwidth and center frequency reconfiguration of these filters. This algorithm is demonstrated on 2nd- and 4th-order filters fabricated in a standard silicon photonics foundry process. After the initial calibration, only 300ms is required to reconfigure a filter to a different center frequency. Thermal crosstalk between the micro-heaters is investigated, with substrate thinning demonstrated to suppress this effect and reduce filter calibration to less than half of the original thick substrate times. This fully automatic tuning approach opens the possibility of employing silicon photonic filters in real communication systems. Also, in the proposed beamforming transmitter, true-time delay ring resonator based 1x4 beamforming network is imbedded. A proposed monitor-based tuning method compensates fabrication variations and thermal crosstalk by controlling micro-heaters individually using electrical monitors. The proposed tuning approach successfully demonstrated calibration of OBFN from severely degraded initial responses to well-defined group delay response required for the targeted radiating angle with a range of 60◦ (-30◦ to 30◦ ) in a linear beamforming antenna array. This algorithm is demonstrated on OBFN fabricated in a standard silicon photonics foundry process. The calibrated OBFN operates at 30GHz and provide 2GHz bandwidth. This fully automatic tuning approach opens the possibility of employing silicon OBFN in real wideband mm-wave wireless communication systems by providing robust operating solutions. All the proposed photonic circuits are implemented using the standard silicon photonic technologies, and resulted in several publications in IEEE/OSA Journals and Conferences

    Energy Harvesting for Self-Powered Wireless Sensors

    Get PDF
    A wireless sensor system is proposed for a targeted deployment in civil infrastructures (namely bridges) to help mitigate the growing problem of deterioration of civil infrastructures. The sensor motes are self-powered via a novel magnetic shape memory alloy (MSMA) energy harvesting material and a low-frequency, low-power rectifier multiplier (RM). Experimental characterizations of the MSMA device and the RM are presented. A study on practical implementation of a strain gauge sensor and its application in the proposed sensor system are undertaken and a low-power successive approximation register analog-to-digital converter (SAR ADC) is presented. The SAR ADC was fabricated and laboratory characterizations show the proposed low-voltage topology is a viable candidate for deployment in the proposed sensor system. Additionally, a wireless transmitter is proposed to transmit the SAR ADC output using on-off keying (OOK) modulation with an impulse radio ultra-wideband (IR-UWB) transmitter (TX). The RM and SAR ADC were fabricated in ON 0.5 micrometer CMOS process. An alternative transmitter architecture is also presented for use in the 3-10GHz UWB band. Unlike the IR-UWB TX described for the proposed wireless sensor system, the presented transmitter is designed to transfer large amounts of information with little concern for power consumption. This second method of data transmission divides the 3-10GHz spectrum into 528MHz sub-bands and "hops" between these sub-bands during data transmission. The data is sent over these multiple channels for short distances (?3-10m) at data rates over a few hundred million bits per second (Mbps). An UWB TX is presented for implementation in mode-I (3.1-4.6GHz) UWB which utilizes multi-band orthogonal frequency division multiplexing (MB-OFDM) to encode the information. The TX was designed and fabricated using UMC 0.13 micrometer CMOS technology. Measurement results and theoretical system level budgeting are presented for the proposed UWB TX

    Energy-Efficient Wireless Circuits and Systems for Internet of Things

    Full text link
    As the demand of ultra-low power (ULP) systems for internet of thing (IoT) applications has been increasing, large efforts on evolving a new computing class is actively ongoing. The evolution of the new computing class, however, faced challenges due to hard constraints on the RF systems. Significant efforts on reducing power of power-hungry wireless radios have been done. The ULP radios, however, are mostly not standard compliant which poses a challenge to wide spread adoption. Being compliant with the WiFi network protocol can maximize an ULP radio’s potential of utilization, however, this standard demands excessive power consumption of over 10mW, that is hardly compatible with in ULP systems even with heavy duty-cycling. Also, lots of efforts to minimize off-chip components in ULP IoT device have been done, however, still not enough for practical usage without a clean external reference, therefore, this limits scaling on cost and form-factor of the new computer class of IoT applications. This research is motivated by those challenges on the RF systems, and each work focuses on radio designs for IoT applications in various aspects. First, the research covers several endeavors for relieving energy constraints on RF systems by utilizing existing network protocols that eventually meets both low-active power, and widespread adoption. This includes novel approaches on 802.11 communication with articulate iterations on low-power RF systems. The research presents three prototypes as power-efficient WiFi wake-up receivers, which bridges the gap between industry standard radios and ULP IoT radios. The proposed WiFi wake-up receivers operate with low power consumption and remain compatible with the WiFi protocol by using back-channel communication. Back-channel communication embeds a signal into a WiFi compliant transmission changing the firmware in the access point, or more specifically just the data in the payload of the WiFi packet. With a specific sequence of data in the packet, the transmitter can output a signal that mimics a modulation that is more conducive for ULP receivers, such as OOK and FSK. In this work, low power mixer-first receivers, and the first fully integrated ultra-low voltage receiver are presented, that are compatible with WiFi through back-channel communication. Another main contribution of this work is in relieving the integration challenge of IoT devices by removing the need for external, or off-chip crystals and antennas. This enables a small form-factor on the order of mm3-scale, useful for medical research and ubiquitous sensing applications. A crystal-less small form factor fully integrated 60GHz transceiver with on-chip 12-channel frequency reference, and good peak gain dual-mode on-chip antenna is presented.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162975/1/jaeim_1.pd

    System-Level Design of All-Digital LTE / LTE-A Transmitter Hardware

    Get PDF
    This thesis presents a detailed system-level analysis of an all-digital transmitter hardware based on the Direct-Digital RF-Modulator (DDRM). The purpose of the presented analysis is to evaluate whether this particular transmitter architecture is suitable to be used in LTE / LTE-A mobile phones. The DDRM architecture is based on the Radio Frequency Digital-to-Analog Converter (RF-DAC), whose system-level characteristics are investigated in this work through mathematical analysis and MATLAB simulations. In particular, a new analytical model for the timing error in the distributed upconversion is developed and verified. Moreover, this thesis reviews the LTE and LTE-A standards, and describes how a baseband environment for signal generation/demodulation can be implemented in MATLAB. The presented system enables much more flexibility with respect to current commercial softwares like Agilent Signal Studio. Simulation results show that the most challenging specification to meet is the out-of-band noise floor, because of the stringent linearity and timing requirements posed on the RF-DAC. This suggests that new means of reducing the out-of-band noise in all-digital transmitters should be researched, in order not to make their design more complicated than for their analog counterpart

    Analysis and Design of a Sub-THz Ultra-Wideband Phased-Array Transmitter

    Get PDF
    This thesis investigates circuits and systems for broadband high datarate transmitter systems in the millimeter-wave (mm-wave) spectrum. During the course of this dissertation, the design process and characterization of a power efficient and wideband binary phase-shift keying (BPSK) transmitter integrated circuit (IC) with local oscillator (LO) frequency multiplication and 360° phase control for beam steering is studied. All required circuit blocks are designed based on the theoretical analysis of the underlying principles, optimized, fabricated and characterized in the research laboratory targeting low power consumption, high efficiency and broadband operation. The phase-controlled push-push (PCPP) architecture enabling frequency multiplication by four in a single stage is analytically studied and characterized finding an optimum between output power and second harmonic suppression depending on the input amplitude. A PCPP based LO chain is designed. A circuit is fabricated establishing the feasibility of this architecture for operation at more than 200 GHz. Building on this, a second circuit is designed, which produces among the highest saturated output powers at 2 dBm. At less than 100 mW of direct current (DC) power consumption, this results in a power-added efficiency (PAE) of 1.6 % improving the state of the art by almost 30 %. Phase-delayed and time-delayed approaches to beam steering are analyzed, identifying and discussing design challenges like area consumption, signal attenuation and beam squint. A 60 GHz active vector-sum phase-shifter with high gain of 11.3 dB and output power of 5 dBm, improving the PAE of the state of the art by a factor of 30 achieving 6.29 %, is designed. The high gain is possible due to an optimization of the orthogonal signal creation stage enabled by studying and comparing different architectures leading to a trade off of lower signal attenuation for higher area consumption in the chosen electromagnetic coupler. By combining this with a frequency quadrupler, a phase steering enabled LO chain for operation at 220 GHz is created and characterized, confirming the preceding analysis of the phase-frequency relation during multiplication. It achieves a power gain of 21 dB, outperforming comparable designs by 25 dB. This allows the combination of phase control, frequency multiplication and pre-amplification. The radio frequency (RF) efficiency is increased 40-fold to 0.99 %, with a total power consumption of 105 mW. Motivated by the distorting effect of beam squint in phase-delayed broadband array systems, a novel analog hybrid beam steering architecture is devised, combining phase-delayed and time-delayed steering with the goal of reducing the beam squint of phase-delayed systems and large area consumption of time-delayed circuits. An analytical design procedure is presented leading to the research finding of a beam squint reduction potential of more than 83 % in an ideal system. Here, the increase in area consumption is outweighed by the reduction in beam squint. An IC with a low power consumption of 4.3 mW has been fabricated and characterized featuring the first time delay circuit operating at above 200 GHz. By producing most of the beam direction by means of time delay the beam squinting can be reduced by more than 75 % in measurements while the subsequent phase shifter ensures continuous beam direction control. Together, the required silicon area can be reduced to 43 % compared to timedelayed systems in the same frequency range. Based on studies of the optimum signal feeding and input matching of a Gilbert cell, an ultra-wideband, low-power mixer was designed. A bandwidth of more than 100 GHz was achieved exceeding the state of the art by 23 %. With a conversion gain of –13 dB, this enables datarates of more than 100 Gbps in BPSK operation. The findings are consolidated in an integrated transmitter operating around 246 GHz doubling the highest published measured datarates of transmitters with LO chain and power amplifier in BPSK operation to 56 Gbps. The resulting transmitter efficiency of 7.4 pJ/bit improves the state of the art by 70 % and 50 % over BPSK and quadrature phaseshift keying (QPSK) systems, respectively. Together, the results of this work form the basis for low-power and efficient next-generation wireless applications operating at many times the datarates available today.:Abstract 3 Zusammenfassung 5 List of Symbols 11 List of Acronyms 17 Prior Publications 19 1. Introduction 21 1.1. Motivation........................... 21 1.2. Objective of this Thesis ................... 25 1.3. Structure of this Thesis ................... 27 2. Overview of Employed Technologies and Techniques 29 2.1. IntegratedCircuitTechnology................ 29 2.2. Transmission Lines and Passive Structures . . . . . . . . 35 2.3. DigitalModulation ...................... 41 3. Frequency Quadrupler 45 3.1. Theoretical Analysis of Frequency Multiplication Circuits 45 3.2. Phase-Controlled Push-Push Principle for Frequency Quadrupling.......................... 49 3.3. Stand-alone Phase-Controlled Push-Push Quadrupler . 60 3.4. Phase-Controlled Push-Push Quadrupler based LO-chain with High Output Power ............... 72 9 4. Array Systems and Dynamic Beam Steering 91 4.1. Theoretical Analysis of BeamSteering. . . . . . . . . . . 95 4.2. Local Oscillator Phase Shifting with Vector-Modulator PhaseShifters......................... 107 4.3. Hybrid True-Time and Phase-Delayed Beam Steering . 131 5. Ultra-Wide Band Modulator for BPSK Operation 155 6. Broadband BPSK Transmitter System for Datarates up to 56 Gbps 167 6.1. System Architecture ..................... 168 6.2. Measurement Technique and Results . . . . . . . . . . . 171 6.3. Summary and performance comparison . . . . . . . . . 185 7. Conclusion and Outlook 189 A. Appendix 195 Bibliography 199 List of Figures 227 Note of Thanks 239 Curriculum Vitae 241Diese Dissertation untersucht Schaltungen und Systeme für breitbandige Transmittersysteme mit hoher Datenrate im Millimeterwellen (mm-wave) Spektrum. Im Rahmen dieser Arbeit werden der Entwurfsprozess und die Charakterisierung eines leistungseffizienten und breitbandigen integrierten Senders basierend auf binärer Phasenumtastung (BPSK) mit Frequenzvervielfachung des Lokaloszillatorsignals und 360°-Phasenkontrolle zur Strahlsteuerung untersucht. Alle erforderlichen Schaltungsblöcke werden auf Grundlage von theoretischen Analysen der zugrundeliegenden Prinzipien entworfen, optimiert, hergestellt und im Forschungslabor charakterisiert, mit den Zielen einer niedrigen Leistungsaufnahme, eines hohen Wirkungsgrades und einer möglichst großen Bandbreite. Die phasengesteuerte Push-Push (PCPP)-Architektur, welche eine Frequenzvervierfachung in einer einzigen Stufe ermöglicht, wird analytisch untersucht und charakterisiert. Dabei wird ein Optimum zwischen Ausgangsleistung und Unterdrückung der zweiten Harmonischen des Eingangssignals in Abhängigkeit von der Eingangsamplitude gefunden. Es wird eine LO-Kette auf PCPP-Basis entworfen. Eine Schaltung wird präsentiert, die die Machbarkeit dieser Architektur für den Betrieb bei mehr als 200 GHz nachweist. Darauf aufbauend wird eine zweite Schaltung entworfen, die mit 2 dBm eine der höchsten publizierten gesättigten Ausgangsleistungen erzeugt. Mit einer Leistungsaufnahme von weniger als 100mW ergibt sich ein Leistungswirkungsgrad (PAE) von 1.6 %, was den Stand der Technik um fast 30 % verbessert. Es werden phasenverzögerte und zeitverzögerte Ansätze zur Steuerung der Strahlrichtung analysiert, wobei Entwicklungsherausforderungen wie Flächenverbrauch, Signaldämpfung und Strahlschielen identifiziert und diskutiert werden. Ein aktiver Vektorsummen-Phasenschieber mit hoher Verstärkung von 11.3 dB und einer Ausgangsleistung von 5 dBm, der mit einer PAE von 6.29 % den Stand der Technik um den Faktor 30 verbessert, wird entworfen. Die hohe Verstärkung ist zum Teil auf eine Optimierung der orthogonalen Signalerzeugungsstufe zurückzuführen, die durch die Untersuchung und den Vergleich verschiedener Architekturen ermöglicht wird. Bei der Entscheidung für einen elektromagnetischen Koppler rechtfertigt die geringere Signaldämpfung einen höheren Flächenverbrauch. Durch die Kombination mit einem Frequenzvervierfacher wird eine LO-Kette mit Phasensteuerung für den Betrieb bei 220 GHz geschaffen und charakterisiert, was die vorangegangene Analyse der Phasen-FrequenzBeziehung während der Multiplikation bestätigt. Sie erreicht einen Leistungsgewinn von 21 dB und übertrifft damit vergleichbare Designs um 25dB. Dies ermöglicht die Kombination von Phasensteuerung, Frequenzvervielfachung und Vorverstärkung. Der HochfrequenzWirkungsgrad wird um das 40-fache auf 0.99 % bei einer Gesamtleistungsaufnahme von 105 mW gesteigert. Motiviert durch den verzerrenden Effekt des Strahlenschielens in phasengesteuerten Breitbandarraysystemen, wird eine neuartige analoge hybride Strahlsteuerungsarchitektur untersucht, die phasenverzögerte und zeitverzögerte Steuerung kombiniert. Damit wird sowohl das Strahlenschielen phasenverzögerter Systeme als auch der große Flächenverbrauch zeitverzögerter Schaltungen reduziert. Es wird ein analytisches Entwurfsverfahren vorgestellt, das zu dem Forschungsergebnis führt, dass in einem idealen System ein Potenzial zur Reduktion des Strahlenschielens von mehr als 83 % besteht. Dabei wird die Zunahme des Flächenverbrauchs durch die Verringerung des Strahlenschielens aufgewogen. Es wird ein IC mit einer geringen Leistungsaufnahme von 4.3mW hergestellt und charakterisiert. Dabei wird die erste Zeitverzögerungsschaltung entworfen, die bei über 200 GHz arbeitet. Durch die Erzeugung eines Großteils der Strahlrichtung mittels Zeitverzögerung kann das Schielen des Strahls bei Messungen um mehr als 75% reduziert werden, während der nachfolgende Phasenschieber eine kontinuierliche Steuerung der Strahlrichtung gewährleistet. Insgesamt kann die benötigte Siliziumfläche im Vergleich zu zeitverzögerten Systemen im gleichen Frequenzbereich auf 43 % reduziert werden. Auf der Grundlage von Studien zur optimalen Signaleinspeisung und Eingangsanpassung einer Gilbert-Zelle wird ein Ultrabreitband-Mischer mit geringem Stromverbrauch entworfen. Dieser erreicht eine Ausgangsbandbreite von mehr als 100 GHz, die den Stand der Technik um 23% übertrifft. Bei einer Wandlungsverstärkung von –13dB ermöglicht dies Datenraten von mehr als 100 Gbps im BPSK-Betrieb. Die Erkenntnisse werden in einem integrierten, breitbandigen Sender konsolidiert, der um 246 GHz arbeitet und die höchsten veröffentlichten gemessenen Datenraten für Sender mit LO-Signalkette und Leistungsverstärker im BPSK-Betrieb auf 56 Gbps verdoppelt. Die daraus resultierende Transmitter-Effizienz von 7.4 pJ/bit verbessert den Stand der Technik um 70 % bzw. 50 % gegenüber BPSKund Quadratur Phasenumtastung (QPSK)-Systemen. Zusammen bilden die Ergebnisse dieser Arbeit die Grundlage für stromsparende, effiziente, mobile Funkanwendungen der nächsten Generation mit einem Vielfachen der heute verfügbaren Datenraten.:Abstract 3 Zusammenfassung 5 List of Symbols 11 List of Acronyms 17 Prior Publications 19 1. Introduction 21 1.1. Motivation........................... 21 1.2. Objective of this Thesis ................... 25 1.3. Structure of this Thesis ................... 27 2. Overview of Employed Technologies and Techniques 29 2.1. IntegratedCircuitTechnology................ 29 2.2. Transmission Lines and Passive Structures . . . . . . . . 35 2.3. DigitalModulation ...................... 41 3. Frequency Quadrupler 45 3.1. Theoretical Analysis of Frequency Multiplication Circuits 45 3.2. Phase-Controlled Push-Push Principle for Frequency Quadrupling.......................... 49 3.3. Stand-alone Phase-Controlled Push-Push Quadrupler . 60 3.4. Phase-Controlled Push-Push Quadrupler based LO-chain with High Output Power ............... 72 9 4. Array Systems and Dynamic Beam Steering 91 4.1. Theoretical Analysis of BeamSteering. . . . . . . . . . . 95 4.2. Local Oscillator Phase Shifting with Vector-Modulator PhaseShifters......................... 107 4.3. Hybrid True-Time and Phase-Delayed Beam Steering . 131 5. Ultra-Wide Band Modulator for BPSK Operation 155 6. Broadband BPSK Transmitter System for Datarates up to 56 Gbps 167 6.1. System Architecture ..................... 168 6.2. Measurement Technique and Results . . . . . . . . . . . 171 6.3. Summary and performance comparison . . . . . . . . . 185 7. Conclusion and Outlook 189 A. Appendix 195 Bibliography 199 List of Figures 227 Note of Thanks 239 Curriculum Vitae 24
    corecore