1,384 research outputs found

    Performance evaluation of secondary control policies with respect to digital communications properties in inverter-based islanded microgrids

    Get PDF
    A key challenge for inverted-based microgrids working in islanded mode is to maintain their own frequency and voltage to a certain reference values while regulating the active and reactive power among distributed generators and loads. The implementation of frequency and voltage restoration control policies often requires the use of a digital communication network for real-time data exchange (tertiary control covers the coordi- nated operation of the microgrid and the host grid). Whenever a digital network is placed within the loop, the operation of the secondary control may be affected by the inherent properties of the communication technology. This paper analyses the effect that properties like transmission intervals and message dropouts have for four existing representative approaches to secondary control in a scalable islanded microgrid. The simulated results reveals pros and cons for each approach, and identifies threats that properly avoided or handled in advance can prevent failures that otherwise would occur. Selected experimental results on a low- scale laboratory microgrid corroborate the conclusions extracted from the simulation study.Peer ReviewedPostprint (author's final draft

    Plug-and-play and coordinated control for bus-connected AC islanded microgrids

    Full text link
    This paper presents a distributed control architecture for voltage and frequency stabilization in AC islanded microgrids. In the primary control layer, each generation unit is equipped with a local controller acting on the corresponding voltage-source converter. Following the plug-and-play design approach previously proposed by some of the authors, whenever the addition/removal of a distributed generation unit is required, feasibility of the operation is automatically checked by designing local controllers through convex optimization. The update of the voltage-control layer, when units plug -in/-out, is therefore automatized and stability of the microgrid is always preserved. Moreover, local control design is based only on the knowledge of parameters of power lines and it does not require to store a global microgrid model. In this work, we focus on bus-connected microgrid topologies and enhance the primary plug-and-play layer with local virtual impedance loops and secondary coordinated controllers ensuring bus voltage tracking and reactive power sharing. In particular, the secondary control architecture is distributed, hence mirroring the modularity of the primary control layer. We validate primary and secondary controllers by performing experiments with balanced, unbalanced and nonlinear loads, on a setup composed of three bus-connected distributed generation units. Most importantly, the stability of the microgrid after the addition/removal of distributed generation units is assessed. Overall, the experimental results show the feasibility of the proposed modular control design framework, where generation units can be added/removed on the fly, thus enabling the deployment of virtual power plants that can be resized over time

    Analysis of the effect of clock drifts on frequency regulation and power sharing in inverter-based islanded microgrids

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Local hardware clocks in physically distributed computation devices hardly ever agree because clocks drift apart and the drift can be different for each device. This paper analyses the effect that local clock drifts have in the parallel operation of voltage source inverters (VSIs) in islanded microgrids (MG). The state-of-the-art control policies for frequency regulation and active power sharing in VSIs-based MGs are reviewed and selected prototype policies are then re-formulated in terms of clock drifts. Next, steady-state properties for these policies are analyzed. For each of the policies, analytical expressions are developed to provide an exact quantification of the impact that drifts have on frequency and active power equilibrium points. In addition, a closed-loop model that accommodates all the policies is derived, and the stability of the equilibrium points is characterized in terms of the clock drifts. Finally, the implementation of the analyzed policies in a laboratory MG provides experimental results that confirm the theoretical analysis.Peer ReviewedPostprint (author's final draft

    Distributed control of a fault tolerant modular multilevel inverter for direct-drive wind turbine grid interfacing

    Get PDF
    Modular generator and converter topologies are being pursued for large offshore wind turbines to achieve fault tolerance and high reliability. A centralized controller presents a single critical point of failure which has prevented a truly modular and fault tolerant system from being obtained. This study analyses the inverter circuit control requirements during normal operation and grid fault ride-through, and proposes a distributed controller design to allow inverter modules to operate independently of each other. All the modules independently estimate the grid voltage magnitude and position, and the modules are synchronised together over a CAN bus. The CAN bus is also used to interleave the PWM switching of the modules and synchronise the ADC sampling. The controller structure and algorithms are tested by laboratory experiments with respect to normal operation, initial synchronization to the grid, module fault tolerance and grid fault ride-through

    Review of Active and Reactive Power Sharing Strategies in Hierarchical Controlled Microgrids

    Get PDF

    A Control Architecture for Regulating Voltage and Power Flows in a Networked Microgrid System

    Get PDF
    This paper presents a unique control system to regulate power exchanges and load bus voltage in a networked microgrid (NMG) system comprising AC and DC microgrids. During the islanding of a microgrid in this NMG system, load voltage and power balance can get disturbed. A control system and associated converter and inverter control methods are presented to rectify these issues. An efficient model predictive control (MPC) method, which gives a tracking error of 50% lower than a conventional proportional-integral (PI) controller, is used to control multiple inverters in the NMG system. Simulation studies are conducted to test the NMG in islanding and load change scenarios. With the help of these studies, it is verified that the MPC-controlled inverters can provide better tracking accuracy in achieving desired power flows in the NMG system

    Droop-free Distributed Control for AC Microgrids

    Get PDF
    • 

    corecore