18 research outputs found

    Hybrid solutions to instantaneous MIMO blind separation and decoding: narrowband, QAM and square cases

    Get PDF
    Future wireless communication systems are desired to support high data rates and high quality transmission when considering the growing multimedia applications. Increasing the channel throughput leads to the multiple input and multiple output and blind equalization techniques in recent years. Thereby blind MIMO equalization has attracted a great interest.Both system performance and computational complexities play important roles in real time communications. Reducing the computational load and providing accurate performances are the main challenges in present systems. In this thesis, a hybrid method which can provide an affordable complexity with good performance for Blind Equalization in large constellation MIMO systems is proposed first. Saving computational cost happens both in the signal sep- aration part and in signal detection part. First, based on Quadrature amplitude modulation signal characteristics, an efficient and simple nonlinear function for the Independent Compo- nent Analysis is introduced. Second, using the idea of the sphere decoding, we choose the soft information of channels in a sphere, and overcome the so- called curse of dimensionality of the Expectation Maximization (EM) algorithm and enhance the final results simultaneously. Mathematically, we demonstrate in the digital communication cases, the EM algorithm shows Newton -like convergence.Despite the widespread use of forward -error coding (FEC), most multiple input multiple output (MIMO) blind channel estimation techniques ignore its presence, and instead make the sim- plifying assumption that the transmitted symbols are uncoded. However, FEC induces code structure in the transmitted sequence that can be exploited to improve blind MIMO channel estimates. In final part of this work, we exploit the iterative channel estimation and decoding performance for blind MIMO equalization. Experiments show the improvements achievable by exploiting the existence of coding structures and that it can access the performance of a BCJR equalizer with perfect channel information in a reasonable SNR range. All results are confirmed experimentally for the example of blind equalization in block fading MIMO systems

    Multichannel Speech Enhancement

    Get PDF

    All-adaptive blind matched filtering for the equalization and identification of multipath channels: a practical approach

    Get PDF
    Blind matched filter receiver is advantageous over the state-of-the-art blind schemes due the simplicity in its implementation. To estimate the multipath communication channels, it uses neither any matrix decomposition methods nor statistics of the received data higher than the second order ones. On the other hand, the realization of the conventional blind matched filter receiver requires the noise variance to be estimated and the equalizer parameters to be calculated in state-space with relatively costly matrix operations. In this paper, a novel architecture is proposed to simplify a potential hardware implementation of the blind matched filter receiver. Our novel approach transforms the blind matched filter receiver into an all-adaptive format which replaces all the matrix operations. Furthermore, the novel design does not need for any extra step to estimate the noise variance. In this paper we also report on a comparative channel equalization and channel identification scenario, looking into the performances of the conventional and our novel all-adaptive blind matched filter receiver through simulations

    Réduction d'interférence dans les systèmes de transmission sans fil

    Get PDF
    Wireless communications have known an exponential growth and a fast progress over the past few decades. Nowadays, wireless mobile communications have evolved over time starting with the first generation primarily developed for voice communications, and reaching the fourth generation referred to as long term evolution (LTE) that offers an increasing capacity and speed using a different radio interface together with core network improvements. Overall throughput and transmission reliability are among the essential measures of service quality in a wireless system. Such measures are mainly subjected to interference management constraint in a multi-user network. The interference management is at the heart of wireless regulation and is essential for maintaining a desirable throughput while avoiding the detrimental impact of interference at the undesired receivers. Our work is incorporated within the framework of interference network where each user is equipped with single or multiple antennas. The goal is to resolve the challenges that the communications face taking into account the achievable rate and the complexity cost. We propose several solutions for the precoding and decoding designs when transmitters have limited cooperation based on a technique called Interference Alignment. We also address the detection scheme in the absence of any precoding design and we introduce a low complexity detection scheme based on the sparse decomposition.Les communications mobiles sans fil ont connu un formidable essor au cours des dernières décennies. Tout a commencé avec les services vocaux offerts par les systèmes de la première génération en 1980, jusqu¿aux systèmes de la quatrième génération aujourd¿hui avec des services internet haut débit et un accroissement du nombre d¿utilisateurs. En effet, les caractéristiques essentielles qui définissent les services et la qualité de ces services dans les systèmes de communication sans fil sont: le débit, la fiabilité de transmission et le nombre d¿utilisateurs. Ces caractéristiques sont fortement liées entre elles et sont dépendantes de la gestion des interférences entre les différents utilisateurs. Les interférences entre-utilisateurs se produisent lorsque plusieurs émetteurs, dans une même zone, transmettent simultanément en utilisant la même bande de fréquence. Dans cette thèse, nous nous intéressons à la gestion d¿interférence entre utilisateurs par le biais de l¿approche d¿alignement d¿interférences où la coopération entre utilisateurs est réduite. Aussi, nous nous sommes intéressés au design d¿un récepteur où l¿alignement d¿interférences n¿est pas utilisé et où la gestion des interférences est réalisée par des techniques de décodage basées sur les décompositions parcimonieuses des signaux de communications. Ces approches ont conduit à des méthodes performantes et peu couteuses, exploitables dans les liens montant ou descendant

    Reduced Complexity Sequential Monte Carlo Algorithms for Blind Receivers

    Get PDF
    Monte Carlo algorithms can be used to estimate the state of a system given relative observations. In this dissertation, these algorithms are applied to physical layer communications system models to estimate channel state information, to obtain soft information about transmitted symbols or multiple access interference, or to obtain estimates of all of these by joint estimation. Initially, we develop and analyze a multiple access technique utilizing mutually orthogonal complementary sets (MOCS) of sequences. These codes deliberately introduce inter-chip interference, which is naturally eliminated during processing at the receiver. However, channel impairments can destroy their orthogonality properties and additional processing becomes necessary. We utilize Monte Carlo algorithms to perform joint channel and symbol estimation for systems utilizing MOCS sequences as spreading codes. We apply Rao-Blackwellization to reduce the required number of particles. However, dense signaling constellations, multiuser environments, and the interchannel interference introduced by the spreading codes all increase the dimensionality of the symbol state space significantly. A full maximum likelihood solution is computationally expensive and generally not practical. However, obtaining the optimum solution is critical, and looking at only a part of the symbol space is generally not a good solution. We have sought algorithms that would guarantee that the correct transmitted symbol is considered, while only sampling a portion of the full symbol space. The performance of the proposed method is comparable to the Maximum Likelihood (ML) algorithm. While the computational complexity of ML increases exponentially with the dimensionality of the problem, the complexity of our approach increases only quadratically. Markovian structures such as the one imposed by MOCS spreading sequences can be seen in other physical layer structures as well. We have applied this partitioning approach with some modification to blind equalization of frequency selective fading channel and to multiple-input multiple output receivers that track channel changes. Additionally, we develop a method that obtains a metric for quantifying the convergence rate of Monte Carlo algorithms. Our approach yields an eigenvalue based method that is useful in identifying sources of slow convergence and estimation inaccuracy.Ph.D.Committee Chair: Douglas B. Williams; Committee Member: Brani Vidakovic; Committee Member: G. Tong zhou; Committee Member: Gordon Stuber; Committee Member: James H. McClella
    corecore