2,302 research outputs found

    Ubiquitous robust communications for emergency response using multi-operator heterogeneous networks

    Get PDF
    A number of disasters in various places of the planet have caused an extensive loss of lives, severe damages to properties and the environment, as well as a tremendous shock to the survivors. For relief and mitigation operations, emergency responders are immediately dispatched to the disaster areas. Ubiquitous and robust communications during the emergency response operations are of paramount importance. Nevertheless, various reports have highlighted that after many devastating events, the current technologies used, failed to support the mission critical communications, resulting in further loss of lives. Inefficiencies of the current communications used for emergency response include lack of technology inter-operability between different jurisdictions, and high vulnerability due to their centralized infrastructure. In this article, we propose a flexible network architecture that provides a common networking platform for heterogeneous multi-operator networks, for interoperation in case of emergencies. A wireless mesh network is the main part of the proposed architecture and this provides a back-up network in case of emergencies. We first describe the shortcomings and limitations of the current technologies, and then we address issues related to the applications and functionalities a future emergency response network should support. Furthermore, we describe the necessary requirements for a flexible, secure, robust, and QoS-aware emergency response multi-operator architecture, and then we suggest several schemes that can be adopted by our proposed architecture to meet those requirements. In addition, we suggest several methods for the re-tasking of communication means owned by independent individuals to provide support during emergencies. In order to investigate the feasibility of multimedia transmission over a wireless mesh network, we measured the performance of a video streaming application in a real wireless metropolitan multi-radio mesh network, showing that the mesh network can meet the requirements for high quality video transmissions

    Performance Evaluation of Video Streaming in an Infrastructure Mesh Based Vehicle Network

    Get PDF
    Most next-generation wireless networks are expected to support video stream- ing which constitutes the bulk of traffic on the Internet. This thesis evaluates the performance of video streaming in a vehicle network with an infrastructure wireless mesh network (WMN) backhaul. Several studies have investigated video quality per- formance primarily in single hop wireless networks and static WMNs. This thesis is based on those studies and conducts the study in relation to a network where the multi-hop features of the mesh network and mobility of the streaming clients may have substantial impact on the perceived video quality in the network. The study assumes a previously proposed vehicle network architecture con- sisting of an infrastructure WMN that serves as the mesh backhaul [2, 3]. A number of mesh routers (MRs) form the mesh backhaul using one of their two IEEE 802.11g radios whereas the other radio is used to communicate with the fast moving mesh clients (MCs). Selective MRs called mesh gateways (MGs) are connected to a wired network (e.g., the Internet, hereafter referred to as the core network) via a point-to- point link and provide gateway connectivity to the rest of the network. A server on the core network acts as a video server and streams individual video streams to the fast moving MCs. Upon deployment, network discovery occurs and segregates the network into a number of separate routing zones with each routing zone consisting of a single MG and all the MRs that use the MG as their gateway. A minimum-hop based routing protocol is used to enable seamless handover of MCs from one MR to another within a single zone. Simulation studies in this thesis inspects the network and video streaming performance within a single routing zone, assuming the handoff and inter-zone routing being taken care of by the routing protocol and only focus on the intra-zone packet forwarding and scheduling impacts. Hence, this study does not address cases where MCs move from one routing zone to another routing zone in the mobile network. In the first part of the study, we evaluate the performance of video streaming in the described network by studying performance metrics across different layers of the protocol stack. The number of video flows that can be supported by the network is experimentally determined for each scenario. In the second part, the thesis studies controllable network and protocol parameters\u27 ability to improve the network and video quality performance. Simulations are run in an integrated framework that includes network-simulator ns-2, NS-MIRACLE, and Evalvid

    Video streaming over wireless networks

    Full text link

    Enabling Parallel Wireless Communication in Mobile Robot Teams

    Get PDF
    Wireless inter-robot communication enables robot teams to cooperatively solve complex problems that cannot be addressed by a single robot. Applications for cooperative robot teams include search and rescue, exploration and surveillance. Communication is one of the most important components in future autonomous robot systems and is essential for core functions such as inter-robot coordination, neighbour discovery and cooperative control algorithms. In environments where communication infrastructure does not exist, decentralised multi-hop networks can be constructed using only the radios on-board each robot. These are known as wireless mesh networks (WMNs). However existing WMNs have limited capacity to support even small robot teams. There is a need for WMNs where links act like dedicated point-to-point connections such as in wired networks. Addressing this problem requires a fundamentally new approach to WMN construction and this thesis is the first comprehensive study in the multi-robot literature to address these challenges. In this thesis, we propose a new class of communication systems called zero mutual interference (ZMI) networks that are able to emulate the point-to-point properties of a wired network over a WMN implementation. We instantiate the ZMI network using a multi-radio multi-channel architecture that autonomously adapts its topology and channel allocations such that all network edges communicate at the full capacity of the radio hardware. We implement the ZMI network on a 100-radio testbed with up to 20-individual nodes and verify its theoretical properties. Mobile robot experiments also demonstrate these properties are practically achievable. The results are an encouraging indication that the ZMI network approach can facilitate the communication demands of large cooperative robot teams deployed in practical problems such as data pipe-lining, decentralised optimisation, decentralised data fusion and sensor networks
    • …
    corecore