265 research outputs found

    UNDERSTANDING THE ADAPTIVE USE OF VIRTUAL WORLD TECHNOLOGY CAPABILITIES AND TRUST IN VIRTUAL TEAMS

    Get PDF
    In an environment of global competition and constant technological change, the use of virtual teams has become commonplace for many organizations. Virtual team members are geographically and temporally dispersed, experience cultural diversity, and lack shared social context and face-to-face encounters considered as irreplaceable for building and maintaining trust. Previous research has established that higher trusting teams have better cooperation and experience improved outcomes; however, trust building in a team where members are from different backgrounds, time zones and cultures is a considerable challenge. Virtual teams (VTs) rely heavily on technology to facilitate coordination, communication, and control in the team. One particular technology that has generated great interest as a viable tool in VTs is broadly referred to as metaverses. Metaverses provide unique technology capabilities that allow individuals to interact in a three-dimensional space. Unique capabilities such as visual communication among avatars, video and audio chat, and the communication of deliberate body language through gestures and other nonverbal cues may provide opportunities for VTs, particularly in relation to trust building. The broad goal of this research is to increase our understanding of the relationship between virtual team members and information technology during the development of trust. Specifically, this thesis focuses on understanding the relationship between metaverse technology capabilities and trust development between VT members by studying how technology capabilities are used and modified to shape trust in general and interpersonal trust in particular

    Using Distributed Ledger Technologies in VANETs to Achieve Trusted Intelligent Transportation Systems

    Get PDF
    With the recent advancements in the networking realm of computers as well as achieving real-time communication between devices over the Internet, IoT (Internet of Things) devices have been on the rise; collecting, sharing, and exchanging data with other connected devices or databases online, enabling all sorts of communications and operations without the need for human intervention, oversight, or control. This has caused more computer-based systems to get integrated into the physical world, inching us closer towards developing smart cities. The automotive industry, alongside other software developers and technology companies have been at the forefront of this advancement towards achieving smart cities. Currently, transportation networks need to be revamped to utilize the massive amounts of data being generated by the public’s vehicle’s on-board devices, as well as other integrated sensors on public transit systems, local roads, and highways. This will create an interconnected ecosystem that can be leveraged to improve traffic efficiency and reliability. Currently, Vehicular Ad-hoc Networks (VANETs) such as vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-grid (V2G) communications, all play a major role in supporting road safety, traffic efficiency, and energy savings. To protect these devices and the networks they form from being targets of cyber-related attacks, this paper presents ideas on how to leverage distributed ledger technologies (DLT) to establish secure communication between vehicles that is decentralized, trustless, and immutable. Incorporating IOTA’s protocols, as well as utilizing Ethereum’s smart contracts functionality and application concepts with VANETs, all interoperating with Hyperledger’s Fabric framework, several novel ideas can be implemented to improve traffic safety and efficiency. Such a modular design also opens up the possibility to further investigate use cases of the blockchain and distributed ledger technologies in creating a decentralized intelligent transportation system (ITS)

    Deconstructing Corporate Governance: The Mechanics of Trusting

    Get PDF
    The phenomenon of trust among firm participants is a much neglected academic inquiry in corporate governance research and the theory of the firm. This Article elaborates on the comparatively small sample of existing legal research on the intersection of trust and corporate governance and tries to interrupt the selective (in-)attention given to the philosophical, psychological, political, sociological, economic, and legal phenomenon that is our individual as well as collective, everyday trust (or distrust) in the functionality and explainability of the world tomorrow in accordance with our preferences of today and our experiences of the past. Trust—as a phenomenon—is a concrete but severely underappreciated reality for the success of corporate investments and the accountability of corporate management. It constitutes part of a complex solution for encouraging investor confidence in the face of absolute decision-making power of corporate directors. Trust efficiently combines and balances otherwise unrestricted managerial power with a robust measure of accountability of corporate management—an entirely elusive measure within the realm of corporate governance law. It thereby provides a sophisticated, yet poorly understood, remedy to the most significant but unresolved academic dilemma in corporate governance theory—namely, the lack of predictive ability of existing microtheoretical models of the firm. This Article primarily discusses trust (and trustworthiness) as a mechanism, not as a virtue. By focusing on the procedural and substantive mechanics of trusting as a phenomenon, this Article explains the cohesive power and low-transactioncost functionality which is built into successful exercises of trusting for purposes of encouraging and establishing pervasive corporate investments as the rational-choice baseline for voluntary firm participants

    Deconstructing Corporate Governance: The Mechanics of Trusting

    Get PDF
    The phenomenon of trust among firm participants is a much neglected academic inquiry in corporate governance research and the theory of the firm. This Article elaborates on the comparatively small sample of existing legal research on the intersection of trust and corporate governance and tries to interrupt the selective (in-)attention given to the philosophical, psychological, political, sociological, economic, and legal phenomenon that is our individual as well as collective, everyday trust (or distrust) in the functionality and explainability of the world tomorrow in accordance with our preferences of today and our experiences of the past. Trust—as a phenomenon—is a concrete but severely underappreciated reality for the success of corporate investments and the accountability of corporate management. It constitutes part of a complex solution for encouraging investor confidence in the face of absolute decision-making power of corporate directors. Trust efficiently combines and balances otherwise unrestricted managerial power with a robust measure of accountability of corporate management—an entirely elusive measure within the realm of corporate governance law. It thereby provides a sophisticated, yet poorly understood, remedy to the most significant but unresolved academic dilemma in corporate governance theory—namely, the lack of predictive ability of existing microtheoretical models of the firm. This Article primarily discusses trust (and trustworthiness) as a mechanism, not as a virtue. By focusing on the procedural and substantive mechanics of trusting as a phenomenon, this Article explains the cohesive power and low-transactioncost functionality which is built into successful exercises of trusting for purposes of encouraging and establishing pervasive corporate investments as the rational-choice baseline for voluntary firm participants

    Secure Data Collection and Analysis in Smart Health Monitoring

    Get PDF
    Smart health monitoring uses real-time monitored data to support diagnosis, treatment, and health decision-making in modern smart healthcare systems and benefit our daily life. The accurate health monitoring and prompt transmission of health data are facilitated by the ever-evolving on-body sensors, wireless communication technologies, and wireless sensing techniques. Although the users have witnessed the convenience of smart health monitoring, severe privacy and security concerns on the valuable and sensitive collected data come along with the merit. The data collection, transmission, and analysis are vulnerable to various attacks, e.g., eavesdropping, due to the open nature of wireless media, the resource constraints of sensing devices, and the lack of security protocols. These deficiencies not only make conventional cryptographic methods not applicable in smart health monitoring but also put many obstacles in the path of designing privacy protection mechanisms. In this dissertation, we design dedicated schemes to achieve secure data collection and analysis in smart health monitoring. The first two works propose two robust and secure authentication schemes based on Electrocardiogram (ECG), which outperform traditional user identity authentication schemes in health monitoring, to restrict the access to collected data to legitimate users. To improve the practicality of ECG-based authentication, we address the nonuniformity and sensitivity of ECG signals, as well as the noise contamination issue. The next work investigates an extended authentication goal, denoted as wearable-user pair authentication. It simultaneously authenticates the user identity and device identity to provide further protection. We exploit the uniqueness of the interference between different wireless protocols, which is common in health monitoring due to devices\u27 varying sensing and transmission demands, and design a wearable-user pair authentication scheme based on the interference. However, the harm of this interference is also outstanding. Thus, in the fourth work, we use wireless human activity recognition in health monitoring as an example and analyze how this interference may jeopardize it. We identify a new attack that can produce false recognition result and discuss potential countermeasures against this attack. In the end, we move to a broader scenario and protect the statistics of distributed data reported in mobile crowd sensing, a common practice used in public health monitoring for data collection. We deploy differential privacy to enable the indistinguishability of workers\u27 locations and sensing data without the help of a trusted entity while meeting the accuracy demands of crowd sensing tasks

    Convergence of Blockchain and Edge Computing for Secure and Scalable IIoT Critical Infrastructures in Industry 4.0

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordCritical infrastructure systems are vital to underpin the functioning of a society and economy. Due to ever-increasing number of Internet-connected Internet-of-Things (IoTs) / Industrial IoT (IIoT), and high volume of data generated and collected, security and scalability are becoming burning concerns for critical infrastructures in industry 4.0. The blockchain technology is essentially a distributed and secure ledger that records all the transactions into a hierarchically expanding chain of blocks. Edge computing brings the cloud capabilities closer to the computation tasks. The convergence of blockchain and edge computing paradigms can overcome the existing security and scalability issues. In this paper, we first introduce the IoT/IIoT critical infrastructure in industry 4.0, and then we briefly present the blockchain and edge computing paradigms. After that, we show how the convergence of these two paradigms can enable secure and scalable critical infrastructures. Then, we provide a survey on state-of-the-art for security and privacy, and scalability of IoT/IIoT critical infrastructures. A list of potential research challenges and open issues in this area is also provided, which can be used as useful resources to guide future research.Engineering and Physical Sciences Research Council (EPSRC

    Byzantine Resilient Protocol for the IoT

    Get PDF
    Wireless sensor networks, often adhering to a single gateway architecture, constitute the communication backbone for many modern cyber-physical systems. Consequently, faulttolerance in CPS becomes a challenging task, especially when accounting for failures (potentially malicious) that incapacitate the gateway or disrupt the nodes-gateway communication, not to mention the energy, timeliness, and security constraints demanded by CPS domains. This paper aims at ameliorating the fault-tolerance of WSN based CPS to increase system and data availability. To this end, we propose a replicated gateway architecture augmented with energy-efficient real-time Byzantineresilient data communication protocols. At the sensors level, we introduce FT-TSTP, a geographic routing protocol capable of delivering messages in an energy-efficient and timely manner to multiple gateways, even in the presence of voids caused by faulty and malicious sensor nodes. At the gateway level, we propose a multi-gateway synchronization protocol, which we call ByzCast, that delivers timely correct data to CPS applications, despite the failure or maliciousness of a number of gateways. We show, through extensive simulations, that our protocols provide better system robustness yielding an increased system and data availability while meeting CPS energy, timeliness, and security demands

    Logical Networks: Self-organizing Overlay Networks and Overlay Computing Systems: [EPI Proposal V2.0]

    Get PDF
    Contents 1 Team on March 15, 2010 ...........................................42 Capsule ...........................................52.1 Slogan and logo............................................ 5 2.2 One equation fits all and keywords ................................. 6 2.3 How to read this proposal ...................................... 63 Vertical view ...........................................63.1 Panorama............................................... 6 3.2 General definitions .......................................... 8 3.3 Virtual organization ......................................... 9 3.4 Execution model ........................................... 94 Horizontal view ...............................................94.1 Panorama............................................... 94.2 Arigatoni overlay network ...................................... 10 4.2.1 Arigatoni units........................................ 10 4.2.2 Virtual organizations in Arigatoni ............................. 12 4.2.3 Resource discovery protocol (RDP)............................. 12 4.2.4 Virtual Intermittent Protocol (VIP) ............................ 13 4.2.5 iNeu: librairies for network computing........................... 144.3 Babelchord, a DHT’s tower ..................................... 144.4 Synapse,interconnecting heterogeneous overlay networks. . . . . . . . . . . . . . . . . . . . . 154.5 Cross-layer overlay design for geo-sensible applications . . . . . . . . . . . . . . . . . . . . . . 175 Diagonal view...............................................175.1 Panorama............................................... 17 5.2 Trees versus graphs: a conflict without a cause .......................... 17 5.3 Fault tolerance ............................................ 18 5.4 Parametricity and universality ................................... 18 5.5 Social networking........................................... 19 5.6 Choice of development platform................................... 19 5.7 Quality metrics for an overlay computer .............................. 19 5.8 Trust and security .......................................... 20 5.9 New models of computations .................................... 216 Topics and time line...............................................226.1 Panorama............................................... 226.2 Topicview............................................... 22 6.2.1 Vertical issues......................................... 22 6.2.2 Horizontal issues ....................................... 22 6.2.3 Diagonalissues........................................ 236.3 Timeview............................................... 23 6.3.1 Short-term .......................................... 23 6.3.2 Medium-term......................................... 24 6.3.3 Long-term........................................... 247 Potential application domains ...........................................247.1 Panorama............................................... 24 7.2 P2P social networks ......................................... 25 7.3 Overlay computer for mobile ad hoc networks........................... 25 7.4 OverStic: the mesh overlay network in Sophia Antipolis ..................... 27 7.5 Reducing the Digital Divide..................................... 28 7.6 GRID applications: scenario for seismic monitoring ....................... 29 7.7 Interconnection of heterogeneous overlay networks ........................ 30 7.8 Toward an overlay network of things (RFID) ........................... 318 Software ...........................................328.1 Panorama............................................... 328.2 Prototype software.......................................... 32 8.2.1 Arigatoni simulator ..................................... 32 8.2.2 Ariwheels........................................... 32 8.2.3 BabelChord.......................................... 36 8.2.4 Synapse............................................ 37 8.2.5 Open-Synapse Client..................................... 38 8.2.6 myTransport Gui....................................... 39 8.2.7 CarPal: a P2P carpooling service ............................. 39 8.2.8 Husky interpreter....................................... 408.3 Potential software .......................................... 41 8.3.1 myMed (in french), see http://www-sop.inria.fr/mymed . . . . . . . . . . . . . . . . 419 Contracts...........................................439.1 INTERREG Alcotra: myMed,2010-2013.............................. 43 9.2 COLOR:JMED,2010 ........................................ 43 9.3 FP6 FET GlobalComputing: IST AEOLUS, 2006-2010 ..................... 43 9.4 JET TEMPUS DEUKS, 2007-2009................................. 4410 Collaborations ...........................................4411 Self assessment ...........................................4411.1 Trivia ................................................. 45 11.2 Conclusions.............................................. 45We propose foundations for generic overlay networks and overlay computing systems. Such overlays are built over a large number of distributed computational agents, virtually organized in colonies or virtual organizations, and ruled by a leader (broker) who is elected democratically (vox populi, vox dei) or imposed by system administrators (primus inter pares). Every agent asks the broker to log in the colony by declaring the resources that can be offered (with variable guarantees). Once logged in, an agent can ask the broker for other resources. Colonies can recursively be considered as evolved agents who can log in an outermost colony governed by another super-leader. Communications and routing intra-colonies goes through a broker-2-broker PKI-based negotiation. Every broker routes intra- and inter- service requests by filtering its resource routing table, and then forwarding the request first inside its colony, and second outside, via the proper super-leader (thus applying an endogenous-first-estrogen- last strategy). Theoretically, queries are formulæ in first-order logic equipped with a small program used to orchestrate and synchronize atomic formulæ (atomic services). When the client agent receives notification of all (or part of) the requested resources, then the real resource exchange is performed directly by the server(s) agents, without any further mediation of the broker, in a pure peer-to-peer fashion. The proposed overlay promotes an intermittent participation in the colony, since peers can appear, disappear, and organize themselves dynamically. This implies that the routing process may lead to failures, because some agents have quit or are temporarily unavailable, or they were logged out manu militari by the broker due to their poor performance or greediness. We aim to design, validate through simulation, and implement these foundations in an overlay network computer system. (From [Liquori-Cosnard TGC-07 paper])
    • …
    corecore