1,393 research outputs found

    Designing to Support Workspace Awareness in Remote Collaboration using 2D Interactive Surfaces

    Get PDF
    Increasing distributions of the global workforce are leading to collaborative workamong remote coworkers. The emergence of such remote collaborations is essentiallysupported by technology advancements of screen-based devices ranging from tabletor laptop to large displays. However, these devices, especially personal and mobilecomputers, still suffer from certain limitations caused by their form factors, that hinder supporting workspace awareness through non-verbal communication suchas bodily gestures or gaze. This thesis thus aims to design novel interfaces andinteraction techniques to improve remote coworkers’ workspace awareness throughsuch non-verbal cues using 2D interactive surfaces.The thesis starts off by exploring how visual cues support workspace awareness infacilitated brainstorming of hybrid teams of co-located and remote coworkers. Basedon insights from this exploration, the thesis introduces three interfaces for mobiledevices that help users maintain and convey their workspace awareness with their coworkers. The first interface is a virtual environment that allows a remote person to effectively maintain his/her awareness of his/her co-located collaborators’ activities while interacting with the shared workspace. To help a person better express his/her hand gestures in remote collaboration using a mobile device, the second interfacepresents a lightweight add-on for capturing hand images on and above the device’sscreen; and overlaying them on collaborators’ device to improve their workspace awareness. The third interface strategically leverages the entire screen space of aconventional laptop to better convey a remote person’s gaze to his/her co-locatedcollaborators. Building on the top of these three interfaces, the thesis envisions an interface that supports a person using a mobile device to effectively collaborate with remote coworkers working with a large display.Together, these interfaces demonstrate the possibilities to innovate on commodity devices to offer richer non-verbal communication and better support workspace awareness in remote collaboration

    This is it ! : Indicating and looking in collaborative work at distance

    Get PDF
    Little is known of the interplay between deixis and eye movements in remote collaboration. This paper presents quantitative results from an experiment where participant pairs had to collaborate at a distance using chat tools that differed in the way messages could be enriched with spatial information from the map in the shared workspace. We studied how the availability of what we defined as an Explicit Referencing mechanism (ER) affected the coordination of the eye movements of the participants. The manipulation of the availability of ER did not produce any significant difference on the gaze coupling. However, we found a primary relation between the pairs recurrence of eye movements and their task performance. Implications for design are discussed

    On Inter-referential Awareness in Collaborative Augmented Reality

    Get PDF
    For successful collaboration to occur, a workspace must support inter-referential awareness - or the ability for one participant to refer to a set of artifacts in the environment, and for that reference to be correctly interpreted by others. While referring to objects in our everyday environment is a straight-forward task, the non-tangible nature of digital artifacts presents us with new interaction challenges. Augmented reality (AR) is inextricably linked to the physical world, and it is natural to believe that the re-integration of physical artifacts into the workspace makes referencing tasks easier; however, we find that these environments combine the referencing challenges from several computing disciplines, which compound across scenarios. This dissertation presents our studies of this form of awareness in collaborative AR environments. It stems from our research in developing mixed reality environments for molecular modeling, where we explored spatial and multi-modal referencing techniques. To encapsulate the myriad of factors found in collaborative AR, we present a generic, theoretical framework and apply it to analyze this domain. Because referencing is a very human-centric activity, we present the results of an exploratory study which examines the behaviors of participants and how they generate references to physical and virtual content in co-located and remote scenarios; we found that participants refer to content using physical and virtual techniques, and that shared video is highly effective in disambiguating references in remote environments. By implementing user feedback from this study, a follow-up study explores how the environment can passively support referencing, where we discovered the role that virtual referencing plays during collaboration. A third study was conducted in order to better understand the effectiveness of giving and interpreting references using a virtual pointer; the results suggest the need for participants to be parallel with the arrow vector (strengthening the argument for shared viewpoints), as well as the importance of shadows in non-stereoscopic environments. Our contributions include a framework for analyzing the domain of inter-referential awareness, the development of novel referencing techniques, the presentation and analysis of our findings from multiple user studies, and a set of guidelines to help designers support this form of awareness

    An Activity-Centric Approach to Configuration Work in Distributed Interaction

    Get PDF
    The widespread introduction of new types of computing devices, such as smartphones, tablet computers, large interactive displays or even wearable devices, has led to setups in which users are interacting with a rich ecology of devices. These new device ecologies have the potential to introduce a whole new set of cross-device and cross-user interactions as well as to support seamless distributed workspaces that facilitate coordination and communication with other users. Because of the distributed nature of this paradigm, there is an intrinsic difficulty and overhead in managing and using these kind of complex device ecologies, which I refer to as configuration work. It is the effort required to set up, manage, communicate, understand and use information, applications and services that are distributed over all devices in use and people involved. Because current devices and their containing software are still document- and application-centric, they fail to capture and support the rich activities and context in which they are being used. This leaves users without a stable concept for cross-device information management, forcing them to perform a large amount of manual configuration work. In this dissertation, I explore an activity-centric approach to configuration work in distributed interaction. The central goal of this dissertation is to develop and apply concepts and ideas from Activity-Centric Computing to distributed interaction. Using the triangulation approach, I explore these concepts on a conceptual, empirical and technological level and present a framework and use cases for designing activitycentric configurations in multi-device information systems. The dissertation presents two major contributions: First, I introduce the term configuration work as an abstract analytical unit that describes and captures the problems and challenges of distributed interaction. Using both empirical data and related work, I argue that configuration work is composed of: curation work, task resumption lag, mobility work, physical handling and articulation work. Using configuration work as a problem description, I operationalize Activity Theory and Activity-Centric Computing to mitigate and reduce configuration work in distributed interaction. By allowing users to interact with computational representations of their real-world activities, creating complex multi-user device ecologies and switching between cross-device information configurations will be more efficient, more effective and provide better support for users’ mental model about a multi-user and multi-device environment. Using activity configuration as a central concept, I introduce a framework that describes how digital representations of human activity can be distributed, fragmented and used across multiple devices and users. Second, I present a technical infrastructure and four applications that apply the concepts of activity configuration. The infrastructure is a general purpose platform for the design, development and deployment of distributed activitycentric systems. The infrastructure simplifies the development of activity-centric systems as it presents complex distributed computing processes and services into high level activity system abstractions. Using this infrastructure and conceptual framework, I describe four fully working applications that explore multi-device interactions in two specific domains: office work and hospital work. The systems are evaluated and tested with end-users in a number of lab and field studies

    Group reaching over digital tabletops with digital arm embodiments

    Get PDF
    In almost all collaborative tabletop tasks, groups require coordinated access to the shared objects on the table’s surface. The physical social norms of close-proximity interactions built up over years of interacting around other physical bodies cause people to avoid interfering with other people (e.g., avoiding grabbing the same object simultaneously). However, some digital tabletop situations require the use of indirect input (e.g., when using mice, and when supporting remote users). With indirect input, people are no longer physically embodied during their reaching gestures, so most systems provide digital embodiments – visual representations of each person – to provide feedback to both the person who is reaching and to the other group members. Tabletop arm embodiments have been shown to better support group interactions than simple visual designs, providing awareness of actions to the group. However, researchers and digital tabletop designers know little of how the design of digital arm embodiments affects the fundamental group tabletop interaction of reaching for objects. Therefore, in this thesis, we evaluate how people coordinate their interactions over digital tabletops when using different types of embodiments. Specifically, in a series of studies, we investigate how the visual design (what they look like) and interaction design (how they work) of digital arm embodiments affects a group’s coordinative behaviours in an open- ended parallel tabletop task. We evaluated visual factors of size, transparency, and realism (through pictures and videos of physical arms), as well as interaction factors of input and augmentations (feedback of interactions), in both a co-located and distributed environment. We found that the visual design had little effect on a group’s ability to coordinate access to shared tabletop items, that embodiment augmentations are useful to support group coordinative actions, and that there are large differences when the person is not physically co-present. Our results demonstrate an initial exploration into the design of digital arm embodiments, providing design guidelines for future researchers and designers to use when designing the next generation of shared digital spaces

    Annotations of maps in collaborative work at a distance

    Get PDF
    This thesis inquires how map annotations can be used to sustain remote collaboration. Maps condense the interplay of space and communication, solving linguistic references by linking conversational content to the actual places to which it refers. This is a mechanism people are accustomed to. When we are face-to-face, we can point to things around us. However, at a distance, we need to recreate a context that can help disambiguate what we mean. A map can help recreate this context. However other technological solutions are required to allow deictic gestures over a shared map when collaborators are not co-located. This mechanism is here termed Explicit Referencing. Several systems that allow sharing maps annotations are reviewed critically. A taxonomy is then proposed to compare their features. Two filed experiments were conducted to investigate the production of collaborative annotations of maps with mobile devices, looking for the reasons why people might want to produce these notes and how they might do so. Both studies led to very disappointing results. The reasons for this failure are attributed to the lack of a critical mass of users (social network), the lack of useful content, and limited social awareness. More importantly, the study identified a compelling effect of the way messages were organized in the tested application, which caused participants to refrain from engaging in content-driven explorations and synchronous discussions. This last qualitative observation was refined in a controlled experiment where remote participants had to solve a problem collaboratively, using chat tools that differed in the way a user could relate an utterance to a shared map. Results indicated that team performance is improved by the Explicit Referencing mechanisms. However, when this is implemented in a way that is detrimental to the linearity of the conversation, resulting in the visual dispersion or scattering of messages, its use has negative consequences for collaborative work at a distance. Additionally, an analysis of the eye movements of the participants over the map helped to ascertain the interplay of deixis and gaze in collaboration. A primary relation was found between the pair's recurrence of eye movements and their task performance. Finally, this thesis presents an algorithm that detects misunderstandings in collaborative work at a distance. It analyses the movements of collaborators' eyes over the shared map, their utterances containing references to this workspace, and the availability of "remote" deictic gestures. The algorithm associates the distance between the gazes of the emitter and gazes of the receiver of a message with the probability that the recipient did not understand the message

    Designing electronic collaborative learning environments

    Get PDF
    Electronic collaborative learning environments for learning and working are in vogue. Designers design them according to their own constructivist interpretations of what collaborative learning is and what it should achieve. Educators employ them with different educational approaches and in diverse situations to achieve different ends. Students use them, sometimes very enthusiastically, but often in a perfunctory way. Finally, researchers study them and—as is usually the case when apples and oranges are compared—find no conclusive evidence as to whether or not they work, where they do or do not work, when they do or do not work and, most importantly, why, they do or do not work. This contribution presents an affordance framework for such collaborative learning environments; an interaction design procedure for designing, developing, and implementing them; and an educational affordance approach to the use of tasks in those environments. It also presents the results of three projects dealing with these three issues
    • 

    corecore