297 research outputs found

    Coding in 802.11 WLANs

    Get PDF
    Forward error correction (FEC) coding is widely used in communication systems to correct transmis- sion errors. In IEEE 802.11a/g transmitters, convolutional codes are used for FEC at the physical (PHY) layer. As is typical in wireless systems, only a limited choice of pre-speci¯ed coding rates is supported. These are implemented in hardware and thus di±cult to change, and the coding rates are selected with point to point operation in mind. This thesis is concerned with using FEC coding in 802.11 WLANs in more interesting ways that are better aligned with application requirements. For example, coding to support multicast tra±c rather than simple point to point tra±c; coding that is cognisant of the multiuser nature of the wireless channel; and coding which takes account of delay requirements as well as losses. We consider layering additional coding on top of the existing 802.11 PHY layer coding, and investigate the tradeoŸ between higher layer coding and PHY layer modulation and FEC coding as well as MAC layer scheduling. Firstly we consider the joint multicast performance of higher-layer fountain coding concatenated with 802.11a/g OFDM PHY modulation/coding. A study on the optimal choice of PHY rates with and without fountain coding is carried out for standard 802.11 WLANs. We ¯nd that, in contrast to studies in cellular networks, in 802.11a/g WLANs the PHY rate that optimizes uncoded multicast performance is also close to optimal for fountain-coded multicast tra±c. This indicates that in 802.11a/g WLANs cross-layer rate control for higher-layer fountain coding concatenated with physical layer modulation and FEC would bring few bene¯ts. Secondly, using experimental measurements taken in an outdoor environment, we model the chan- nel provided by outdoor 802.11 links as a hybrid binary symmetric/packet erasure channel. This hybrid channel oŸers capacity increases of more than 100% compared to a conventional packet erasure channel (PEC) over a wide range of RSSIs. Based upon the established channel model, we further consider the potential performance gains of adopting a binary symmetric channel (BSC) paradigm for multi-destination aggregations in 802.11 WLANs. We consider two BSC-based higher-layer coding approaches, i.e. superposition coding and a simpler time-sharing coding, for multi-destination aggre- gated packets. The performance results for both unicast and multicast tra±c, taking account of MAC layer overheads, demonstrate that increases in network throughput of more than 100% are possible over a wide range of channel conditions, and that the simpler time-sharing approach yields most of these gains and have minor loss of performance. Finally, we consider the proportional fair allocation of high-layer coding rates and airtimes in 802.11 WLANs, taking link losses and delay constraints into account. We ¯nd that a layered approach of separating MAC scheduling and higher-layer coding rate selection is optimal. The proportional fair coding rate and airtime allocation (i) assigns equal total airtime (i.e. airtime including both successful and failed transmissions) to every station in a WLAN, (ii) the station airtimes sum to unity (ensuring operation at the rate region boundary), and (iii) the optimal coding rate is selected to maximise goodput (treating packets decoded after the delay deadline as losses)

    Radio resource management and metric estimation for multicarrier CDMA systems

    Get PDF

    Portfolio peak algorithms achieving superior performance for maximizing throughput in WiMAX networks

    Get PDF
    The Mobile WiMAX IEEE 802.16 standards ensure provision of last mile wireless access, variable and high data rate, point to multi-point communication, large frequency range and QoS (Quality of Service) for various types of applications. The WiMAX standards are published by the Institute of Electric and Electronic Engineers (IEEE) and specify the standards of services and transmissions. However, the way how to run these services and when the transmission should be started are not specified in the IEEE standards and it is up to computer scientists to design scheduling algorithms that can best meet the standards. Finding the best way to implement the WiMAX standards through designing efficient scheduler algorithms is a very important component in wireless systems and the scheduling period presents the most common challenging issue in terms of throughput and time delay. The aim of the research presented in this thesis was to design and develop an efficient scheduling algorithm to provide the QoS support for real-time and non-real-time services with the WiMAX Network. This was achieved by combining a portfolio of algorithms, which will control and update transmission with the required algorithm by the various portfolios for supporting QoS such as; the guarantee of a maximum throughput for real-time and non-real-time traffic. Two algorithms were designed in this process and will be discussed in this thesis: Fixed Portfolio Algorithms and Portfolio Peak Algorithm. In order to evaluate the proposed algorithms and test their efficiency for IEEE 802.16 networks, the authors simulated the algorithms in the NS2 simulator. Evaluation of the proposed Portfolio algorithms was carried out through comparing its performance with those of the conventional algorithms. On the other hand, the proposed Portfolio scheduling algorithm was evaluated by comparing its performance in terms of throughput, delay, and jitter. The simulation results suggest that the Fixed Portfolio Algorithms and the Portfolio Peak Algorithm achieve higher performance in terms of throughput than all other algorithms. Keywords: WiMAX, IEEE802.16, QoS, Scheduling Algorithms, Fixed Portfolio Algorithms, and Portfolio Peak Algorithms.The Mobile WiMAX IEEE 802.16 standards ensure provision of last mile wireless access, variable and high data rate, point to multi-point communication, large frequency range and QoS (Quality of Service) for various types of applications. The WiMAX standards are published by the Institute of Electric and Electronic Engineers (IEEE) and specify the standards of services and transmissions. However, the way how to run these services and when the transmission should be started are not specified in the IEEE standards and it is up to computer scientists to design scheduling algorithms that can best meet the standards. Finding the best way to implement the WiMAX standards through designing efficient scheduler algorithms is a very important component in wireless systems and the scheduling period presents the most common challenging issue in terms of throughput and time delay. The aim of the research presented in this thesis was to design and develop an efficient scheduling algorithm to provide the QoS support for real-time and non-real-time services with the WiMAX Network. This was achieved by combining a portfolio of algorithms, which will control and update transmission with the required algorithm by the various portfolios for supporting QoS such as; the guarantee of a maximum throughput for real-time and non-real-time traffic. Two algorithms were designed in this process and will be discussed in this thesis: Fixed Portfolio Algorithms and Portfolio Peak Algorithm. In order to evaluate the proposed algorithms and test their efficiency for IEEE 802.16 networks, the authors simulated the algorithms in the NS2 simulator. Evaluation of the proposed Portfolio algorithms was carried out through comparing its performance with those of the conventional algorithms. On the other hand, the proposed Portfolio scheduling algorithm was evaluated by comparing its performance in terms of throughput, delay, and jitter. The simulation results suggest that the Fixed Portfolio Algorithms and the Portfolio Peak Algorithm achieve higher performance in terms of throughput than all other algorithms. Keywords: WiMAX, IEEE802.16, QoS, Scheduling Algorithms, Fixed Portfolio Algorithms, and Portfolio Peak Algorithms

    A cross-layer middleware architecture for time and safety critical applications in MANETs

    Get PDF
    Mobile Ad hoc Networks (MANETs) can be deployed instantaneously and adaptively, making them highly suitable to military, medical and disaster-response scenarios. Using real-time applications for provision of instantaneous and dependable communications, media streaming, and device control in these scenarios is a growing research field. Realising timing requirements in packet delivery is essential to safety-critical real-time applications that are both delay- and loss-sensitive. Safety of these applications is compromised by packet loss, both on the network and by the applications themselves that will drop packets exceeding delay bounds. However, the provision of this required Quality of Service (QoS) must overcome issues relating to the lack of reliable existing infrastructure, conservation of safety-certified functionality. It must also overcome issues relating to the layer-2 dynamics with causal factors including hidden transmitters and fading channels. This thesis proposes that bounded maximum delay and safety-critical application support can be achieved by using cross-layer middleware. Such an approach benefits from the use of established protocols without requiring modifications to safety-certified ones. This research proposes ROAM: a novel, adaptive and scalable cross-layer Real-time Optimising Ad hoc Middleware framework for the provision and maintenance of performance guarantees in self-configuring MANETs. The ROAM framework is designed to be scalable to new optimisers and MANET protocols and requires no modifications of protocol functionality. Four original contributions are proposed: (1) ROAM, a middleware entity abstracts information from the protocol stack using application programming interfaces (APIs) and that implements optimisers to monitor and autonomously tune conditions at protocol layers in response to dynamic network conditions. The cross-layer approach is MANET protocol generic, using minimal imposition on the protocol stack, without protocol modification requirements. (2) A horizontal handoff optimiser that responds to time-varying link quality to ensure optimal and most robust channel usage. (3) A distributed contention reduction optimiser that reduces channel contention and related delay, in response to detection of the presence of a hidden transmitter. (4) A feasibility evaluation of the ROAM architecture to bound maximum delay and jitter in a comprehensive range of ns2-MIRACLE simulation scenarios that demonstrate independence from the key causes of network dynamics: application setting and MANET configuration; including mobility or topology. Experimental results show that ROAM can constrain end-to-end delay, jitter and packet loss, to support real-time applications with critical timing requirements

    Quality of service for VoIP in wireless communications

    Get PDF
    Ever since telephone services were available to the public, technologies have evolved to more efficient methods of handling phone calls. Originally circuit switched networks were a breakthrough for voice services, but today most technologies have adopted packet switched networks, improving efficiency at a cost of Quality of Service (QoS). A good example of packet switched network is the Internet, a resource created to handle data over an Internet Protocol (IP) that can handle voice services, known as the Voice over the Internet Protocol (VoIP). The combination of wireless networks and free VoIP services is very popular, however its limitations in security and network overload are still a handicap for most practical applications. This thesis investigates network performance under VoIP sessions. The aim is to compare the performance of a variety of audio codecs that diminishes the impact of VoIP in the network. Therefore the contribution of this research is twofold: To study and analyse the extension of speech quality predictors by a new speech quality model to accurately estimate whether the network can handle a VoIP session or not and to implement a new application of network coding for VoIP to increase throughput. The analysis and study of speech quality predictors is based on the mathematical model developed by the E-model. A case study of an embedded Session Initiation Protocol (SIP) proxy, merged with a Media Gateway that bridges mobile networks to wired networks has been developed to understand its effects on QoS. Experimental speech quality measurements under wired and wireless scenarios were compared with the mathematical speech predictor resulting in an extended mathematical solution of the E-model. A new speech quality model for cascaded networks was designed and implemented out of this research. Provided that each channel is modelled by a Markov Chain packet loss model the methodology can predict expected speech quality and inform the QoS manager to take action. From a data rate perspective a VoIP session has a very specific characteristic; exchanged data between two end nodes is often symmetrical. This opens up a new opportunity for centralised VoIP sessions where network coding techniques can be applied to increase throughput performance at the channel. An application layer has been implemented based on network coding, fully compatible with existing protocols and successfully achieves the network capacity.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Modelling the IEEE 802.11 wireless MAC layer under heterogeneous VoIP traffic to evaluate and dimension QoE

    Get PDF
    PhDAs computers become more popular in the home and workplace, sharing resources and Internet access locally is a necessity. The simplest method of choice is by deploying a Wireless Local Area Network; they are inexpensive, easy to configure and require minimal infrastructure. The wireless local area network of choice is the IEEE 802.11 standard; IEEE 802.11, however, is now being implemented on larger scales outside of the original scope of usage. The realistic usage spans from small scale home solutions to commercial ‘hot spots,’ providing access within medium size areas such as cafĂ©s, and more recently blanket coverage in metropolitan. Due to increasing Internet availability and faster network access, in both wireless and wired, the concept of using such networks for real-time services such as internet telephony is also becoming popular. IEEE 802.11 wireless access is shared with many clients on a single channel and there are three non-overlapping channels available. As more stations communicate on a single channel there is increased contention resulting in longer delays due to the backoff overhead of the IEEE 802.11 protocol and hence loss and delay variation; not desirable for time critical traffic. Simulation of such networks demands super-computing resource, particularly where there are over a dozen clients on a given. Fortunately, the author has access to the UK’s super computers and therefore a clear motivation to develop a state of the art analytical model with the required resources to validate. The goal was to develop an analytical model to deal with realistic IEEE 802.11 deployments and derive results without the need for super computers. A network analytical model is derived to model the characteristics of the IEEE 802.11 protocol from a given scenario, including the number of clients and the traffic load of each. The model is augmented from an existing published saturated case, where each client is assumed to always have traffic to transmit. The nature of the analytical model is to allow stations to have a variable load, which is achieved by modifying the existing models and then to allow stations to operate with different traffic profiles. The different traffic profiles, for each station, is achieved by using the augmented model state machine per station and distributing the probabilities to each station’s state machine accordingly. To address the gap between the analytical models medium access delay and standard network metrics which include the effects of buffering traffic, a queueing model is identified and augmented which transforms the medium access delay into standard network metrics; delay, loss and jitter. A Quality of Experience framework, for both computational and analytical results, is investigated to allow the results to be represented as user perception scores and the acceptable voice call carrying capacity found. To find the acceptable call carrying capacity, the ITU-T G.107 E-Model is employed which can be used to give each client a perception rating in terms of user satisfaction. PAGE 4 OF 162 QUEEN MARY, UNIVERSITY OF LONDON OLIVER SHEPHERD With the use of a novel framework, benchmarking results show that there is potential to maximise the number of calls carried by the network with an acceptable user perception rating. Dimensioning of the network is undertaken, again compared with simulation from the super computers, to highlight the usefulness of the analytical model and framework and provides recommendations for network configurations, particularly for the latest Wireless Multimedia extensions available in IEEE 802.11. Dimensioning shows an overall increase of acceptable capacity of 43%; from 7 to 10 bidirectional calls per Access Point by using a tuned transmission opportunity to allow each station to send 4 packets per transmission. It is found that, although the accuracy of the results from the analytical model is not precise, the model achieves a 1 in 13,000 speed up compared to simulation. Results show that the point of maximum calls comes close to simulation with the analytical model and framework and can be used as a guide to configure the network. Alternatively, for specific capacity figures, the model can be used to home-in on the optimal region for further experiments and therefore achievable with standard computational resource, i.e. desktop machines
    • 

    corecore