6 research outputs found

    Using Commercial Ray Tracing Software to Drive an Attenuator-Based Mobile WIreless Testbed

    Get PDF
    We propose and build a prototype architecture for a laboratory-based mobile wireless testbed that uses highly detailed, site-specific channel models to dynamically configure a many-to-many analog channel emulator. Unlike similar systems that have used abstract channel models with few details from the physical environment, we take advantage of commercial ray tracing software and high-performance hardware to make realistic signal power and characteristics predictions in a highly detailed environment. The ray tracing results are used to program a many-to-many analog channel emulator. Using this system, we can conveniently, repeatedly, and realistically subject real wireless nodes to the effects of mobility. We use our prototype system and a detailed CAD model of the University of Maryland campus to compare field test measurements to measurements made from the same devices in the same physical scenario in the testbed. This thesis presents the design, implementation, and validation phases of the proposed mobile wireless testbed

    Design, Implementation and Characterization of a Cooperative Communications System

    Get PDF
    Cooperative communications is a class of techniques which seek to improve reliability and throughput in wireless systems by pooling the resources of distributed nodes. While cooperation can occur at different network layers and time scales, physical layer cooperation at symbol time scales offers the largest benefit. However, symbol level cooperation poses significant implementation challenges, especially in the context of a network of distributed nodes. We first present the design and implementation of a complete cooperative physical layer transceiver, built from scratch on the Wireless Open-Access Research Platform (WARP). In our implementation fully distributed nodes employ physical layer cooperation at symbol time scales without requiring a central synchronization source. Our design supports per-packet selection of non-cooperative or cooperative communication, with cooperative links utilizing either amplify-and-forward or decode-and-forward relaying. A single design implements transmission, reception and relaying, allowing each node to assume the role of source, destination or relay per packet. We also present experimental methodologies for evaluating our design and extensive experimental results of our transceiver's performance under a variety of topologies and propagation conditions. Our methods are designed to test both overall performance and to isolate and understand the underlying causes of performance limitations. Our results clearly demonstrate significant performance gains (more than 50× improvement in PER in some topologies) provided by physical layer cooperation even when subject to the constraints of a real-time implementation. As with all our work on WARP, our transceiver design and experimental framework are available via the open-source WARP repository for use by other wireless researchers

    Transport protocols for multi hop wireless networks

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Contributions to Improve Cognitive Strategies with Respect to Wireless Coexistence

    Get PDF
    Cognitive radio (CR) can identify temporarily available opportunities in a shared radio environment to improve spectral efficiency and coexistence behavior of radio systems. It operates as a secondary user (SU) and accommodates itself in detected opportunities with an intention to avoid harmful collisions with coexisting primary user (PU) systems. Such opportunistic operation of a CR system requires efficient situational awareness and reliable decision making for radio resource allocation. Situational awareness includes sensing the environment followed by a hypothesis testing for detection of available opportunities in the coexisting environment. This process is often known as spectral hole detection. Situational knowledge can be further enriched by forecasting the primary activities in the radio environment using predictive modeling based approaches. Improved knowledge about the coexisting environment essentially means better decision making for secondary resource allocation. This dissertation identifies limitations of existing predictive modeling and spectral hole detection based resource allocation strategies and suggest improvements. Firstly, accurate and efficient estimation of statistical parameters of the radio environment is identified as a fundamental challenge to realize predictive modeling based cognitive approaches. Lots of useful training data which are essential to learn the system parameters are not available either because of environmental effects such as noise, interference and fading or because of limited system resources particularly sensor bandwidth. While handling environmental effects to improve signal reception in radio systems has already gained much attention, this dissertation addresses the problem of data losses caused by limited sensor bandwidth as it is totally ignored so far and presents bandwidth independent parameter estimation methods. Where, bandwidth independent means achieving the same level of estimation accuracy for any sensor bandwidth. Secondly, this dissertation argues that the existing hole detection strategies are dumb because they provide very little information about the coexisting environment. Decision making for resource allocation based on this dumb hole detection approach cannot optimally exploit the opportunities available in the coexisting environment. As a solution, an intelligent hole detection scheme is proposed which suggests classifying the primary systems and using the documented knowledge of identified radio technologies to fully understand their coexistence behavior. Finally, this dissertation presents a neuro-fuzzy signal classifier (NFSC) that uses bandwidth, operating frequency, pulse shape, hopping behavior and time behavior of signals as distinct features in order to xii identify the PU signals in coexisting environments. This classifier provides the foundation for bandwidth independent parameter estimation and intelligent hole detection. MATLAB/Simulink based simulations are used to support the arguments throughout in this dissertation. A proof-of-concept demonstrator using microcontroller and hardware defined radio (HDR) based transceiver is also presented at the end.</p

    Proceedings of the Third International Mobile Satellite Conference (IMSC 1993)

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial cellular communications services. While the first and second International Mobile Satellite Conferences (IMSC) mostly concentrated on technical advances, this Third IMSC also focuses on the increasing worldwide commercial activities in Mobile Satellite Services. Because of the large service areas provided by such systems, it is important to consider political and regulatory issues in addition to technical and user requirements issues. Topics covered include: the direct broadcast of audio programming from satellites; spacecraft technology; regulatory and policy considerations; advanced system concepts and analysis; propagation; and user requirements and applications

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion
    corecore