1,127 research outputs found

    Computational structure‐based drug design: Predicting target flexibility

    Get PDF
    The role of molecular modeling in drug design has experienced a significant revamp in the last decade. The increase in computational resources and molecular models, along with software developments, is finally introducing a competitive advantage in early phases of drug discovery. Medium and small companies with strong focus on computational chemistry are being created, some of them having introduced important leads in drug design pipelines. An important source for this success is the extraordinary development of faster and more efficient techniques for describing flexibility in three‐dimensional structural molecular modeling. At different levels, from docking techniques to atomistic molecular dynamics, conformational sampling between receptor and drug results in improved predictions, such as screening enrichment, discovery of transient cavities, etc. In this review article we perform an extensive analysis of these modeling techniques, dividing them into high and low throughput, and emphasizing in their application to drug design studies. We finalize the review with a section describing our Monte Carlo method, PELE, recently highlighted as an outstanding advance in an international blind competition and industrial benchmarks.We acknowledge the BSC-CRG-IRB Joint Research Program in Computational Biology. This work was supported by a grant from the Spanish Government CTQ2016-79138-R.J.I. acknowledges support from SVP-2014-068797, awarded by the Spanish Government.Peer ReviewedPostprint (author's final draft

    Development of an Automatic Pipeline for Participation in the CELPP Challenge

    Full text link
    The prediction of how a ligand binds to its target is an essential step for Structure-Based Drug Design (SBDD) methods. Molecular docking is a standard tool to predict the binding mode of a ligand to its macromolecular receptor and to quantify their mutual complementarity, with multiple applications in drug design. However, docking programs do not always find correct solutions, either because they are not sampled or due to inaccuracies in the scoring functions. Quantifying the docking performance in real scenarios is essential to understanding their limitations, managing expectations and guiding future developments. Here, we present a fully automated pipeline for pose prediction validated by participating in the Continuous Evaluation of Ligand Pose Prediction (CELPP) Challenge. Acknowledging the intrinsic limitations of the docking method, we devised a strategy to automatically mine and exploit pre-existing data, defining-whenever possible-empirical restraints to guide the docking process. We prove that the pipeline is able to generate predictions for most of the proposed targets as well as obtain poses with low RMSD values when compared to the crystal structure. All things considered, our pipeline highlights some major challenges in the automatic prediction of protein-ligand complexes, which will be addressed in future versions of the pipeline. Keywords: D3R; automated pipeline; binding mode prediction; docking; pocket detection

    Merging Ligand-Based and Structure-Based Methods in Drug Discovery: An Overview of Combined Virtual Screening Approaches

    Get PDF
    Virtual screening (VS) is an outstanding cornerstone in the drug discovery pipeline. A variety of computational approaches, which are generally classified as ligand-based (LB) and structure-based (SB) techniques, exploit key structural and physicochemical properties of ligands and targets to enable the screening of virtual libraries in the search of active compounds. Though LB and SB methods have found widespread application in the discovery of novel drug-like candidates, their complementary natures have stimulated continued e orts toward the development of hybrid strategies that combine LB and SB techniques, integrating them in a holistic computational framework that exploits the available information of both ligand and target to enhance the success of drug discovery projects. In this review, we analyze the main strategies and concepts that have emerged in the last years for defining hybrid LB + SB computational schemes in VS studies. Particularly, attention is focused on the combination of molecular similarity and docking, illustrating them with selected applications taken from the literature

    Technological developments in Virtual Screening for the discovery of small molecules with novel mechanisms of action

    Get PDF
    Programa de Doctorat en Recerca, Desenvolupament i Control de Medicaments[eng] Advances in structural and molecular biology have favoured the rational development of novel drugs thru structure-based drug design (SBDD). Particularly, computational tools have proven to be rapid and efficient tools for hit discovery and optimization. The main motivation of this thesis is to improve and develop new methods in the area of computer-based drug discovery in order to study challenging targets. Specifically, this thesis is focused on docking and Virtual Screening (VS) methodologies to be able to exploit non-standard sites, like protein-protein interfaces or allosteric sites, and discover bioactive molecules with novel mechanisms of action. First, I developed an automatic pipeline for binding mode prediction that applies knowledge- based restraints and validated the approach by participating in the CELPP Challenge, a blind pose prediction challenge. The aim of the first VS in this thesis is to find small molecules able to not only disrupt the RANK-RANKL interaction but also inhibit the constitutive activation of the receptor. With a combination of computational, biophysical, and cell-based assays we were able to identify the first small molecule binders for RANK that could be used as a treatment for Triple Negative Breast Cancer. When working with challenging targets, or with non-standard mechanisms of action, the relationship between binding and the biological response is unpredictable, because the biological response (if any) will depend on the biological function of the particular allosteric site, which is generally unknown. For this reason, we then tested the applicability of the combination of ultrahigh-throughput VS with low-throughput high content assay. This allowed us to characterize a novel allosteric pocket in PTEN and also describe the first allosteric modulators for this protein. Finally, as the accessible Chemical Space grows at a rapid pace, we developed an algorithm to efficiently explore ultra-large Chemical Collections using a Bottom-up approach. We prospectively validated the approach in BRD4 and identified novel BRD4 inhibitors with an affinity comparable to advanced drug candidates for this target.[spa] Els avenços en biologia estructural i molecular han afavorit el desenvolupament racional de nous fàrmacs a través del disseny de fàrmacs basat en l'estructura (SBDD). En particular, les eines computacionals han demostrat ser ràpides i eficients per al descobriment i l'optimització de fàrmacs. La principal motivació d'aquesta tesi és millorar i desenvolupar nous mètodes en l'àrea del descobriment de fàrmacs per ordinador per tal d'estudiar proteïnes complexes. Concretament, aquesta tesi se centra en les metodologies d'acoblament i de cribratge virtual (CV) per poder explotar llocs no estàndard, com interfícies proteïna-proteïna o llocs al·lostèrics, i descobrir molècules bioactives amb nous mecanismes d'acció. En primer lloc, vaig desenvolupar un protocol automàtic per a la predicció del mode d’unió aplicant restriccions basades en el coneixement i vaig validar l'enfocament participant en el repte CELPP, un repte de predicció del mode d’unió a cegues. L'objectiu del primer CV d'aquesta tesi és trobar petites molècules capaces no només d'interrompre la interacció RANK-RANKL sinó també d'inhibir l'activació constitutiva del receptor. Amb una combinació d'assajos computacionals, biofísics i basats en cèl·lules, vam poder identificar les primeres molècules petites per a RANK que es podrien utilitzar com a tractament per al càncer de mama triple negatiu. Quan es treballa amb proteïnes complexes, o amb mecanismes d'acció no estàndard, la relació entre la unió i la resposta biològica és impredictible, perquè la resposta biològica (si n'hi ha) dependrà de la funció biològica del lloc al·lostèric particular, que generalment és desconeguda. Per aquest motiu, després vam provar l'aplicabilitat de la combinació de CV d'alt rendiment amb assaig de contingut alt de baix rendiment. Això ens va permetre caracteritzar un nou lloc d’unió al·lostèric en PTEN i també descriure els primers moduladors al·lostèrics d'aquesta proteïna. Finalment, a mesura que l'espai químic accessible creix a un ritme ràpid, hem desenvolupat un algorisme per explorar de manera eficient col·leccions de productes químics molt grans mitjançant un enfocament de baix a dalt. Vam validar aquest enfocament amb BRD4 i vam identificar nous inhibidors de BRD4 amb una afinitat comparable als candidats a fàrmacs més avançats per a aquesta proteïna

    Technological developments in Virtual Screening for the discovery of small molecules with novel mechanisms of action

    Full text link
    [eng] Advances in structural and molecular biology have favoured the rational development of novel drugs thru structure-based drug design (SBDD). Particularly, computational tools have proven to be rapid and efficient tools for hit discovery and optimization. The main motivation of this thesis is to improve and develop new methods in the area of computer-based drug discovery in order to study challenging targets. Specifically, this thesis is focused on docking and Virtual Screening (VS) methodologies to be able to exploit non-standard sites, like protein-protein interfaces or allosteric sites, and discover bioactive molecules with novel mechanisms of action. First, I developed an automatic pipeline for binding mode prediction that applies knowledge- based restraints and validated the approach by participating in the CELPP Challenge, a blind pose prediction challenge. The aim of the first VS in this thesis is to find small molecules able to not only disrupt the RANK-RANKL interaction but also inhibit the constitutive activation of the receptor. With a combination of computational, biophysical, and cell-based assays we were able to identify the first small molecule binders for RANK that could be used as a treatment for Triple Negative Breast Cancer. When working with challenging targets, or with non-standard mechanisms of action, the relationship between binding and the biological response is unpredictable, because the biological response (if any) will depend on the biological function of the particular allosteric site, which is generally unknown. For this reason, we then tested the applicability of the combination of ultrahigh-throughput VS with low-throughput high content assay. This allowed us to characterize a novel allosteric pocket in PTEN and also describe the first allosteric modulators for this protein. Finally, as the accessible Chemical Space grows at a rapid pace, we developed an algorithm to efficiently explore ultra-large Chemical Collections using a Bottom-up approach. We prospectively validated the approach in BRD4 and identified novel BRD4 inhibitors with an affinity comparable to advanced drug candidates for this target.[cat] Els avenços en biologia estructural i molecular han afavorit el desenvolupament racional de nous fàrmacs a través del disseny de fàrmacs basat en l'estructura (SBDD). En particular, les eines computacionals han demostrat ser ràpides i eficients per al descobriment i l'optimització de fàrmacs. La principal motivació d'aquesta tesi és millorar i desenvolupar nous mètodes en l'àrea del descobriment de fàrmacs per ordinador per tal d'estudiar proteïnes complexes. Concretament, aquesta tesi se centra en les metodologies d'acoblament i de cribratge virtual (CV) per poder explotar llocs no estàndard, com interfícies proteïna-proteïna o llocs al·lostèrics, i descobrir molècules bioactives amb nous mecanismes d'acció. En primer lloc, vaig desenvolupar un protocol automàtic per a la predicció del mode d’unió aplicant restriccions basades en el coneixement i vaig validar l'enfocament participant en el repte CELPP, un repte de predicció del mode d’unió a cegues. L'objectiu del primer CV d'aquesta tesi és trobar petites molècules capaces no només d'interrompre la interacció RANK-RANKL sinó també d'inhibir l'activació constitutiva del receptor. Amb una combinació d'assajos computacionals, biofísics i basats en cèl·lules, vam poder identificar les primeres molècules petites per a RANK que es podrien utilitzar com a tractament per al càncer de mama triple negatiu. Quan es treballa amb proteïnes complexes, o amb mecanismes d'acció no estàndard, la relació entre la unió i la resposta biològica és impredictible, perquè la resposta biològica (si n'hi ha) dependrà de la funció biològica del lloc al·lostèric particular, que generalment és desconeguda. Per aquest motiu, després vam provar l'aplicabilitat de la combinació de CV d'alt rendiment amb assaig de contingut alt de baix rendiment. Això ens va permetre caracteritzar un nou lloc d’unió al·lostèric en PTEN i també descriure els primers moduladors al·lostèrics d'aquesta proteïna. Finalment, a mesura que l'espai químic accessible creix a un ritme ràpid, hem desenvolupat un algorisme per explorar de manera eficient col·leccions de productes químics molt grans mitjançant un enfocament de baix a dalt. Vam validar aquest enfocament amb BRD4 i vam identificar nous inhibidors de BRD4 amb una afinitat comparable als candidats a fàrmacs més avançats per a aquesta proteïna

    Improved prediction of ligand-protein binding affinities by meta-modeling

    Full text link
    The accurate screening of candidate drug ligands against target proteins through computational approaches is of prime interest to drug development efforts, as filtering potential candidates would save time and expenses for finding drugs. Such virtual screening depends in part on methods to predict the binding affinity between ligands and proteins. Given many computational models for binding affinity prediction with varying results across targets, we herein develop a meta-modeling framework by integrating published empirical structure-based docking and sequence-based deep learning models. In building this framework, we evaluate many combinations of individual models, training databases, and linear and nonlinear meta-modeling approaches. We show that many of our meta-models significantly improve affinity predictions over individual base models. Our best meta-models achieve comparable performance to state-of-the-art exclusively structure-based deep learning tools. Overall, we demonstrate that diverse modeling approaches can be ensembled together to gain substantial improvement in binding affinity prediction while allowing control over input features such as physicochemical properties or molecular descriptors.Comment: 61 pages, 3 main tables, 6 main figures, 6 supplementary figures, and supporting information. For 8 supplementary tables and code, see https://github.com/Lee1701/Lee2023

    Selection of protein conformations for structure-based polypharmacology studies

    Get PDF
    Several drugs exert their therapeutic effect through the modulation of multiple targets. Structure-based approaches hold great promise for identifying compounds with the desired polypharmacological profiles. These methods use knowledge of the protein binding sites to identify stereoelectronically complementary ligands. The selection of the most suitable protein conformations to be used in the design process is vital, especially for multitarget drug design in which the same ligand has to be accommodated in multiple binding pockets. Herein, we focus on currently available techniques for the selection of the most suitable protein conformations for multitarget drug design, compare the potential advantages and limitations of each method, and comment on how their combination could help in polypharmacology drug design

    Strengths and Weaknesses of Docking Simulations in the SARS-CoV-2 Era: The Main Protease (Mpro) Case Study

    Get PDF
    The scientific community is working against the clock to arrive at therapeutic interventions to treat patients with COVID-19. Among the strategies for drug discovery, virtual screening approaches have the capacity to search potential hits within millions of chemical structures in days, with the appropriate computing infrastructure. In this article, we first analyzed the published research targeting the inhibition of the main protease (Mpro), one of the most studied targets of SARS-CoV-2, by docking-based methods. An alarming finding was the lack of an adequate validation of the docking protocols (i.e., pose prediction and virtual screening accuracy) before applying them in virtual screening campaigns. The performance of the docking protocols was tested at some level in 57.7% of the 168 investigations analyzed. However, we found only three examples of a complete retrospective analysis of the scoring functions to quantify the virtual screening accuracy of the methods. Moreover, only two publications reported some experimental evaluation of the proposed hits until preparing this manuscript. All of these findings led us to carry out a retrospective performance validation of three different docking protocols, through the analysis of their pose prediction and screening accuracy. Surprisingly, we found that even though all tested docking protocols have a good pose prediction, their screening accuracy is quite limited as they fail to correctly rank a test set of compounds. These results highlight the importance of conducting an adequate validation of the docking protocols before carrying out virtual screening campaigns, and to experimentally confirm the predictions made by the models before drawing bold conclusions. Finally, successful structure-based drug discovery investigations published during the redaction of this manuscript allow us to propose the inclusion of target flexibility and consensus scoring as alternatives to improve the accuracy of the methods.Fil: Llanos, Manuel. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Gantner, Melisa Edith. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Rodríguez, Santiago. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Alberca, Lucas Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Bellera, Carolina Leticia. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Talevi, Alan. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Gavernet, Luciana. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentin

    Molecular docking: Shifting paradigms in drug discovery

    Get PDF
    Molecular docking is an established in silico structure-based method widely used in drug discovery. Docking enables the identification of novel compounds of therapeutic interest, predicting ligand-target interactions at a molecular level, or delineating structure-activity relationships (SAR), without knowing a priori the chemical structure of other target modulators. Although it was originally developed to help understanding the mechanisms of molecular recognition between small and large molecules, uses and applications of docking in drug discovery have heavily changed over the last years. In this review, we describe how molecular docking was firstly applied to assist in drug discovery tasks. Then, we illustrate newer and emergent uses and applications of docking, including prediction of adverse effects, polypharmacology, drug repurposing, and target fishing and profiling, discussing also future applications and further potential of this technique when combined with emergent techniques, such as artificial intelligence
    corecore