2,062 research outputs found

    Buffer Sizing for 802.11 Based Networks

    Get PDF
    We consider the sizing of network buffers in 802.11 based networks. Wireless networks face a number of fundamental issues that do not arise in wired networks. We demonstrate that the use of fixed size buffers in 802.11 networks inevitably leads to either undesirable channel under-utilization or unnecessary high delays. We present two novel dynamic buffer sizing algorithms that achieve high throughput while maintaining low delay across a wide range of network conditions. Experimental measurements demonstrate the utility of the proposed algorithms in a production WLAN and a lab testbed.Comment: 14 pages, to appear on IEEE/ACM Transactions on Networkin

    Production planning systems for cellular manufacturing

    Get PDF
    New product development is one of the most powerful but difficult activities in business. It is also a very important factor affecting final product quality. There are many techniques available for new product development. Experimental design is now regarded as one of the most significant techniques. In this article, we will discuss how to use the technique of experimental design in developing a new product - an extrusion press. In order to provide a better understanding of this specific process, a brief description of the extrusion press is presented. To ensure the successful development of the extrusion press, customer requirements and expectations were obtained by detailed market research. The critical and non-critical factors affecting the performance of the extrusion press were identified in preliminary experiments. Through conducting single factorial experiments, the critical factorial levels were determined. The relationships between the performance indexes of the extrusion press and the four critical factors were determined on the basis of multi-factorial experiments. The mathematical models for the performance of the extrusion press were established according to a central composite rotatable design. The best combination of the four critical factors and the optimum performance indexes were determined by optimum design. The results were verified by conducting a confirmatory experiment. Finally, a number of conclusions became evident.

    Proceedings of the third International Workshop of the IFIP WG5.7

    Get PDF
    Contents of the papers presented at the international workshop deal with the wide variety of new and computer-based techniques for production planning and control that has become available to the scientific and industrial world in the past few years: formal modeling techniques, artificial neural networks, autonomous agent theory, genetic algorithms, chaos theory, fuzzy logic, simulated annealing, tabu search, simulation and so on. The approach, while being scientifically rigorous, is focused on the applicability to industrial environment

    Convergence of trajectories and optimal buffer sizing for MIMD congestion control

    Get PDF
    We study the interaction between the MIMD (Multiplicative Increase Multiplicative Decrease) congestion control and a bottleneck router with Drop Tail buffer. We consider the problem in the framework of deterministic hybrid models. We study conditions under which the system trajectories converge to limiting cycles with a single jump. Following that, we consider the problem of the optimal buffer sizing in the framework of multi-criteria optimization in which the Lagrange function corresponds to a linear combination of the average throughput and the average delay in the queue. As case studies, we consider the Slow Start phase of TCP New Reno and Scalable TCP for high speed networks. © 2009 Elsevier B.V. All rights reserved

    Convergence of trajectories and optimal buffer sizing for AIMD congestion control

    Get PDF
    We study the interaction between the AIMD (Additive Increase Multiplicative Decrease) multi-socket congestion control and a bottleneck router with Drop Tail buffer. We consider the problem in the framework of deterministic hybrid models. First, we show that trajectories always converge to limiting cycles. We characterize the cycles. Necessary and sufficient conditions for the absence of multiple jumps in the same cycle are obtained. Then, we propose an analytical framework for the optimal choice of the router buffer size. We formulate this problem as a multi-criteria optimization problem, in which the Lagrange function corresponds to a linear combination of the average goodput and the average delay in the queue. Our analytical results are confirmed by simulations performed with MATLAB Simulink

    AI for in-line vehicle sequence controlling: development and evaluation of an adaptive machine learning artifact to predict sequence deviations in a mixed-model production line

    Get PDF
    Customers in the manufacturing sector, especially in the automotive industry, have a high demand for individualized products at price levels comparable to traditional mass production. The contrary objectives of providing a variety of products and operating at minimum costs have introduced a high degree of production planning and control mechanisms based on a stable order sequence for mixed-model assembly lines. A major threat to this development is sequence scrambling, triggered by both operational and product-related root causes. Despite the introduction of just-in-time and fixed production times, the problem of sequence scrambling remains partially unresolved in the automotive industry. Negative downstream effects range from disruptions in the just-in-sequence supply chain to a stop of the production process. A precise prediction of sequence deviations at an early stage allows the introduction of counteractions to stabilize the sequence before disorder emerges. While procedural causes are widely addressed in research, the work at hand requires a different perspective involving a product-related view. Built on unique data from a real-world global automotive manufacturer, a supervised classification model is trained and evaluated. This includes all the necessary steps to design, implement, and assess an AI artifact, as well as data gathering, preprocessing, algorithm selection, and evaluation. To ensure long-term prediction stability, we include a continuous learning module to counter data drifts. We show that up to 50% of the major deviations can be predicted in advance. However, we do not consider any process-related information, such as machine conditions and shift plans, but solely focus on the exploitation of product features like body type, powertrain, color, and special equipment

    Improving Performance for CSMA/CA Based Wireless Networks

    Get PDF
    Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) based wireless networks are becoming increasingly ubiquitous. With the aim of supporting rich multimedia applications such as high-definition television (HDTV, 20Mbps) and DVD (9.8Mbps), one of the technology trends is towards increasingly higher bandwidth. Some recent IEEE 802.11n proposals seek to provide PHY rates of up to 600 Mbps. In addition to increasing bandwidth, there is also strong interest in extending the coverage of CSMA/CA based wireless networks. One solution is to relay traffic via multiple intermediate stations if the sender and the receiver are far apart. The so called “mesh” networks based on this relay-based approach, if properly designed, may feature both “high speed” and “large coverage” at the same time. This thesis focusses on MAC layer performance enhancements in CSMA/CA based networks in this context. Firstly, we observe that higher PHY rates do not necessarily translate into corresponding increases in MAC layer throughput due to the overhead of the CSMA/CA based MAC/PHY layers. To mitigate the overhead, we propose a novel MAC scheme whereby transported information is partially acknowledged and retransmitted. Theoretical analysis and extensive simulations show that the proposed MAC approach can achieve high efficiency (low MAC overhead) for a wide range of channel variations and realistic traffic types. Secondly, we investigate the close interaction between the MAC layer and the buffer above it to improve performance for real world traffic such as TCP. Surprisingly, the issue of buffer sizing in 802.11 wireless networks has received little attention in the literature yet it poses fundamentally new challenges compared to buffer sizing in wired networks. We propose a new adaptive buffer sizing approach for 802.11e WLANs that maintains a high level of link utilisation, while minimising queueing delay. Thirdly, we highlight that gross unfairness can exist between competing flows in multihop mesh networks even if we assume that orthogonal channels are used in neighbouring hops. That is, even without inter-channel interference and hidden terminals, multi-hop mesh networks which aim to offer a both “high speed” and “large coverage” are not achieved. We propose the use of 802.11e’s TXOP mechanism to restore/enfore fairness. The proposed approach is implementable using off-the-shelf devices and fully decentralised (requires no message passing)

    Buffer Techniques For Stochastic Resource Constrained Project Scheduling With Stochastic Task Insertions Problems

    Get PDF
    Project managers are faced with the challenging task of managing an environment filled with uncertainties that may lead to multiple disruptions during project execution. In particular, they are frequently confronted with planning for routine and non-routine unplanned work: known, identified, tasks that may or may not occur depending upon various, often unpredictable, factors. This problem is known as the stochastic task insertion problem, where tasks of deterministic duration occur stochastically. Traditionally, project managers may include an extra margin within deterministic task times or an extra time buffer may be allotted at the end of the project schedule to protect the final project completion milestone. Little scientific guidance is available to better integrate buffers strategically into the project schedule. Motivated by the Critical Chain and Buffer Management approach of Goldratt, this research identifies, defines, and demonstrates new buffer sizing techniques to improve project duration and stability metrics associated with the stochastic resource constrained project scheduling problem with stochastic task insertions. Specifically, this research defines and compares partial buffer sizing strategies for projects with varying levels of resource and network complexity factors as well as the level and location of the stochastically occurring tasks. Several project metrics may be impacted by the stochastic occurrence or non-occurrence of a task such as the project makespan and the project stability. New duration and stability metrics are developed in this research and are used to evaluate the effectiveness of the proposed buffer sizing techniques. These robustness measures are computed through the comparison of the characteristics of the initial schedule (termed the infeasible base schedule), a modified base schedule (or as-run schedule) and an optimized version of the base schedule (or perfect knowledge schedule). Seven new buffer sizing techniques are introduced in this research. Three are based on a fixed percentage of task duration and the remaining four provide variable buffer sizes based upon the location of the stochastic task in the schedule and knowledge of the task stochasticity characteristic. Experimental analysis shows that partial buffering produces improvements in the project stability and duration metrics when compared to other baseline scheduling approaches. Three of the new partial buffering techniques produced improvements in project metrics. One of these partial buffers was based on a fixed percentage of task duration and the other two used a variable buffer size based on knowledge of the location of the task in the project network. This research provides project schedulers with new partial buffering techniques and recommendations for the type of partial buffering technique that should be utilized when project duration and stability performance improvements are desired. When a project scheduler can identify potential unplanned work and where it might occur, the use of these partial buffer techniques will yield a better estimated makespan. Furthermore, it will result in less disruption to the planned schedule and minimize the amount of time that specific tasks will have to move to accommodate the unplanned tasks

    How green is a lean supply chain?

    Get PDF
    This article presents a supply chain planning model that can be used to investigate tradeoffs between cost and environmental degradation including carbon emissions, energy consumption and waste generation. The model also incorporates other aspects of real world supply chains such as multiple transport lot sizing and flexible holding capacity of warehouses. The application of the model and solution method is investigated in an actual case problem. Our analysis of the numerical results focuses on investigating relationship between lean practices and green outcomes. We find that (1) not all lean interventions at the tactical supply chain planning level result in green benefits, and (2) an agile supply chain is the greenest and most efficient alternative when compared to strictly lean and centralized situations
    • …
    corecore