193 research outputs found

    Quantitative Approach to Supramolecular Assembly Engineering for Isolating and Activating Antigen-Specific T Cells

    Full text link
    T cell immunotherapy is a novel therapeutic strategy that aims to leverage the antigen-specific nature of a T cell immune response to treat a variety of immunological conditions. Over the past twenty years, T cell immunotherapy has been applied to treat several types of cancer, autoimmune conditions, and chronic infections, culminating in the FDA approval of two highly effective chimeric antigen receptor (CAR) T cell therapies targeting hematological cancers in 2017. While the initial success of T cell immunotherapy has been encouraging, identifying appropriate antigenic targets and optimizing T cell activation to promote effective responses in vivo remain significant challenges. In this dissertation, we discuss the development and application of new molecular tools for identifying, isolating, and activating antigen-specific T cells, which are directly relevant to the current challenges facing T cell immunotherapy. One of the greatest obstacles to developing a successful T cell immunotherapy is the selection of appropriate antigenic targets. T cells naturally recognize antigen-derived peptides presented on polymorphic major histocompatibility complex (MHC) proteins, and different MHC alleles exhibit different peptide binding specificities. Therefore, peptides that promiscuously bind multiple MHC alleles representing a diverse population have significant potential in the development of broadly protective peptide-based therapeutics and vaccines. A number of high-throughput in silico strategies have been developed to predict peptide-MHC binding; however, the accuracy of these approaches is generally inadequate for the reliable prediction of class II peptide-MHC (MHCII) interactions. In contrast, most experimental systems designed to measure peptide-MHCII binding emphasize quantitative detail over throughput. In this dissertation, we develop and validate a high-throughput screening strategy to evaluate peptide binding to four common MHCII alleles. Using this strategy, which we have termed microsphere-assisted peptide screening (MAPs), we screened overlapping peptide libraries of antigenic viral proteins and identified 12 promiscuously MHCII-binding peptides. Subsequent structural analysis indicated that nearly half of these peptides overlapped with antibody neutralization sites on the respective viral protein. Together, these results indicate that the MAPS strategy can be used to rapidly identify promiscuously binding and immunodominant peptides that have therapeutic relevance. Another significant challenge limiting the successful application of T cell immunotherapy is expanding a clinically relevant number of therapeutically effective T cells. The effectiveness of a T cell response is largely determined by the spatial and stoichiometric organization of signals delivered to the T cell during T cell activation. One strategy for promoting an effective T cell response is to tune the presentation of stimulatory and costimulatory signals through artificial antigen presentation. However, existing technologies have a limited ability to control the spatial and stoichiometric organization of T cell ligands on 3D surfaces. In this dissertation, we introduce a novel strategy for presenting highly organized clusters of stimulatory and costimulatory ligands to T cells using protein-scaffold directed assembly. Using this approach, we systematically investigated how the global surface density, local valency, and stoichiometric ratio of T cell ligands on a 3D cellular (yeast) surface can be manipulated to tune T cell activation. After validating this approach, we further develop more complex scaffold-assembly schemes to enhance the controllability of isolating and activating antigen-specific T cells. We believe that MAPS and artificial antigen presentation using protein-scaffold directed assembly provide a robust toolset for identifying, isolating, and activating antigen-specific T cells for T cell immunotherapy.PHDChemical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147510/1/masonrsm_1.pd

    T-cell receptor cognate target prediction based on paired α and β chain sequence and structural CDR loop similarities

    Get PDF
    T-cell receptors (TCR) mediate immune responses recognizing peptides in complex with major histocompatibility complexes (pMHC) displayed on the surface of cells. Resolving the challenge of predicting the cognate pMHC target of a TCR would benefit many applications in the field of immunology, including vaccine design/discovery and the development of immunotherapies. Here, we developed a model for prediction of TCR targets based on similarity to a database of TCRs with known targets. Benchmarking the model on a large set of TCRs with known target, we demonstrated how the predictive performance is increased (i) by focusing on CDRs rather than the full length TCR protein sequences, (ii) by incorporating information from paired α and β chains, and (iii) integrating information for all 6 CDR loops rather than just CDR3. Finally, we show how integration of the structure of CDR loops, as obtained through homology modeling, boosts the predictive power of the model, in particular in situations where no high-similarity TCRs are available for the query. These findings demonstrate that TCRs that bind to the same target also share, to a very high degree, sequence, and structural features. This observation has profound impact for future development of prediction models for TCR-pMHC interactions and for the use of such models for the rational design of T cell based therapies.Fil: Lanzarotti, Esteban Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Marcatili, Paolo. Technical University of Denmark; DinamarcaFil: Nielsen, Morten. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina. Technical University of Denmark; Dinamarc

    Computational Analysis of T Cell Receptor Repertoire and Structure

    Get PDF
    The human adaptive immune system has evolved to provide a sophisticated response to a vast body of pathogenic microbes and toxic substances. The primary mediators of this response are T and B lymphocytes. Antigenic peptides presented at the surface of infected cells by major histocompatibility complex (MHC) molecules are recognised by T cell receptors (TCRs) with exceptional specificity. This specificity arises from the enormous diversity in TCR sequence and structure generated through an imprecise process of somatic gene recombination that takes place during T cell development. Quantification of the TCR repertoire through the analysis of data produced by high-throughput RNA sequencing allows for a characterisation of the immune response to disease over time and between patients, and the development of methods for diagnosis and therapeutic design. The latest version of the software package Decombinator extracts and quantifies the TCR repertoire with improved accuracy and compatibility with complementary experimental protocols and external computational tools. The software has been extended for analysis of fragmented short-read data from single cells, comparing favourably with two alternative tools. The development of cell-based therapeutics and vaccines is incomplete without an understanding of molecular level interactions. The breadth of TCR diversity and cross-reactivity presents a barrier for comprehensive structural resolution of the repertoire by traditional means. Computational modelling of TCR structures and TCR-pMHC complexes provides an efficient alternative. Four generalpurpose protein-protein docking platforms were compared in their ability to accurately model TCR-pMHC complexes. Each platform was evaluated against an expanded benchmark of docking test cases and in the context of varying additional information about the binding interface. Continual innovation in structural modelling techniques sets the stage for novel automated tools for TCR design. A prototype platform has been developed, integrating structural modelling and an optimisation routine, to engineer desirable features into TCR and TCR-pMHC complex models

    T-cell epitope prediction and immune complex simulation using molecular dynamics: state of the art and persisting challenges

    Get PDF
    Atomistic Molecular Dynamics provides powerful and flexible tools for the prediction and analysis of molecular and macromolecular systems. Specifically, it provides a means by which we can measure theoretically that which cannot be measured experimentally: the dynamic time-evolution of complex systems comprising atoms and molecules. It is particularly suitable for the simulation and analysis of the otherwise inaccessible details of MHC-peptide interaction and, on a larger scale, the simulation of the immune synapse. Progress has been relatively tentative yet the emergence of truly high-performance computing and the development of coarse-grained simulation now offers us the hope of accurately predicting thermodynamic parameters and of simulating not merely a handful of proteins but larger, longer simulations comprising thousands of protein molecules and the cellular scale structures they form. We exemplify this within the context of immunoinformatics

    pDOCK: a new technique for rapid and accurate docking of peptide ligands to Major Histocompatibility Complexes

    Get PDF
    Background: Identification of antigenic peptide epitopes is an essential prerequisite in T cell-based molecular vaccine design. Computational (sequence-based and structure-based) methods are inexpensive and efficient compared to experimental approaches in screening numerous peptides against their cognate MHC alleles. In structure-based protocols, suited to alleles with limited epitope data, the first step is to identify high-binding peptides using docking techniques, which need improvement in speed and efficiency to be useful in large-scale screening studies. We present pDOCK: a new computational technique for rapid and accurate docking of flexible peptides to MHC receptors and primarily apply it on a non-redundant dataset of 186 pMHC (MHC-I and MHC-II) complexes with X-ray crystal structures. Results: We have compared our docked structures with experimental crystallographic structures for the immunologically relevant nonameric core of the bound peptide for MHC-I and MHC-II complexes. Primary testing for re-docking of peptides into their respective MHC grooves generated 159 out of 186 peptides with Ca RMSD of less than 1.00 Å, with a mean of 0.56 Å. Amongst the 25 peptides used for single and variant template docking, the Ca RMSD values were below 1.00 Å for 23 peptides. Compared to our earlier docking methodology, pDOCK shows upto 2.5 fold improvement in the accuracy and is ~60% faster. Results of validation against previously published studies represent a seven-fold increase in pDOCK accuracy. Conclusions: The limitations of our previous methodology have been addressed in the new docking protocol making it a rapid and accurate method to evaluate pMHC binding. pDOCK is a generic method and although benchmarks against experimental structures, it can be applied to alleles with no structural data using sequence information. Our outcomes establish the efficacy of our procedure to predict highly accurate peptide structures permitting conformational sampling of the peptide in MHC binding groove. Our results also support the applicability of pDOCK for in silico identification of promiscuous peptide epitopes that are relevant to higher proportions of human population with greater propensity to activate T cells making them key targets for the design of vaccines and immunotherapies.16 page(s

    Best practices for bioinformatic characterization of neoantigens for clinical utility

    Get PDF
    Neoantigens are newly formed peptides created from somatic mutations that are capable of inducing tumor-specific T cell recognition. Recently, researchers and clinicians have leveraged next generation sequencing technologies to identify neoantigens and to create personalized immunotherapies for cancer treatment. To create a personalized cancer vaccine, neoantigens must be computationally predicted from matched tumor-normal sequencing data, and then ranked according to their predicted capability in stimulating a T cell response. This candidate neoantigen prediction process involves multiple steps, including somatic mutation identification, HLA typing, peptide processing, and peptide-MHC binding prediction. The general workflow has been utilized for many preclinical and clinical trials, but there is no current consensus approach and few established best practices. In this article, we review recent discoveries, summarize the available computational tools, and provide analysis considerations for each step, including neoantigen prediction, prioritization, delivery, and validation methods. In addition to reviewing the current state of neoantigen analysis, we provide practical guidance, specific recommendations, and extensive discussion of critical concepts and points of confusion in the practice of neoantigen characterization for clinical use. Finally, we outline necessary areas of development, including the need to improve HLA class II typing accuracy, to expand software support for diverse neoantigen sources, and to incorporate clinical response data to improve neoantigen prediction algorithms. The ultimate goal of neoantigen characterization workflows is to create personalized vaccines that improve patient outcomes in diverse cancer types

    DynaDom: structure-based prediction of T cell receptor inter-domain and T cell receptor-peptide-MHC (class I) association angles

    Get PDF
    Table S3. Per residue flip states using Reduce, Protoss and DynaDom comparing single domains and TCR complexes. (PDF 145 kb

    Quantitative approaches for decoding the specificity of the human T cell repertoire

    Get PDF
    T cell receptor (TCR)-peptide-major histocompatibility complex (pMHC) interactions play a vital role in initiating immune responses against pathogens, and the specificity of TCRpMHC interactions is crucial for developing optimized therapeutic strategies. The advent of high-throughput immunological and structural evaluation of TCR and pMHC has provided an abundance of data for computational approaches that aim to predict favorable TCR-pMHC interactions. Current models are constructed using information on protein sequence, structures, or a combination of both, and utilize a variety of statistical learning-based approaches for identifying the rules governing specificity. This review examines the current theoretical, computational, and deep learning approaches for identifying TCR-pMHC recognition pairs, placing emphasis on each method’s mathematical approach, predictive performance, and limitations
    corecore