5,089 research outputs found

    Aspects of forest biomass in the earth system: Its role and major unknowns

    No full text
    Forests are a major and diverse land cover occupying a third of the terrestrial vegetated surface; they store 50 to 65% of terrestrial organic carbon (including the soil) and contribute half to terrestrial productivity. Forest biomass stores close to 80% of all the biomass on Earth. As noted earlier, forests play an important role in the Earth system as carbon stocks, carbon sinks, mediator of the water cycle and as modifier of land surface roughness and albedo. Moreover, forests play a role as habitat for many species, are an economic source of timber and firewood and have recreational value for local populations and touristic visitors. Here, we appraise how ecosystem functions are influenced in particular by biomass and its vertical and horizontal distribution and hypothesize that almost all functions are directly or indirectly related to biomass, in addition to other factors. At landscape or regional scale, heterogeneity of biomass presumably has an important influence on a variety of processes, but there are gaps both in quantifying the heterogeneity of forests globally and in quantifying the effect of this heterogeneity. Similarly, while the role of forests for the global carbon cycle is important, large uncertainties exist regarding stocks, turnover times and the carbon sink function in forest, as an analysis of state-of-the-art carbon cycle and vegetation models shows. Upcoming global satellite missions such as GEDI, NISAR and BIOMASS will be able to address the above uncertainties and lack of understanding in combination with modeling approaches, in particular by exploiting information on vertical and horizontal heterogeneity

    The Northern Eurasia Earth Science Partnership: An Example of Science Applied to Societal Needs

    Get PDF
    Northern Eurasia, the largest landmass in the northern extratropics, accounts for ~20% of the global land area. However, little is known about how the biogeochemical cycles, energy and water cycles, and human activities specific to this carbon-rich, cold region interact with global climate. A major concern is that changes in the distribution of land-based life, as well as its interactions with the environment, may lead to a self-reinforcing cycle of accelerated regional and global warming. With this as its motivation, the Northern Eurasian Earth Science Partnership Initiative (NEESPI) was formed in 2004 to better understand and quantify feedbacks between northern Eurasian and global climates. The first group of NEESPI projects has mostly focused on assembling regional databases, organizing improved environmental monitoring of the region, and studying individual environmental processes. That was a starting point to addressing emerging challenges in the region related to rapidly and simultaneously changing climate, environmental, and societal systems. More recently, the NEESPI research focus has been moving toward integrative studies, including the development of modeling capabilities to project the future state of climate, environment, and societies in the NEESPI domain. This effort will require a high level of integration of observation programs, process studies, and modeling across disciplines

    Long-term effects of fire and harvest on carbon stocks of boreal forests in northeastern China

    Get PDF
    International audienceAbstractKey messageFire, harvest, and their spatial interactions are likely to affect boreal forest carbon stocks. Repeated disturbances associated with short fire return intervals and harvest rotations resulted in landscapes with a higher proportion of young stands that store less carbon than mature stands.ContextBoreal forests represent about one third of forest area and one third of forest carbon stocks on the Earth. Carbon stocks of boreal forests are sensitive to climate change, natural disturbances, and human activities.AimsThe objectives of this study were to evaluate the effects of fire, harvest, and their spatial interactions on boreal forest carbon stocks of northeastern China.MethodsWe used a coupled forest landscape model (LANDIS PRO) and a forest ecosystem model (LINKAGES) framework to simulate the landscape-level effects of fire, harvest, and their spatial interactions over 150 years.ResultsOur simulation suggested that aboveground carbon and soil organic carbon are significantly reduced by fire and harvest over the whole simulation period. The long-term effects of fire and harvest on carbon stocks were greater than the short-term effects. The combined effects of fire and harvest on carbon stocks are less than the sum of the separate effects of fire and harvest. The response of carbon stocks was impacted by the spatial variability of fire and harvest regimes.ConclusionThese results emphasize that the spatial interactions of fire and harvest play an important role in regulating boreal forest carbon stocks

    Northern Eurasia Future Initiative (NEFI): facing the challenges and pathways of global change in the twenty-first century

    Get PDF
    During the past several decades, the Earth system has changed significantly, especially across Northern Eurasia. Changes in the socio-economic conditions of the larger countries in the region have also resulted in a variety of regional environmental changes that can have global consequences. The Northern Eurasia Future Initiative (NEFI) has been designed as an essential continuation of the Northern Eurasia Earth Science Partnership Initiative (NEESPI), which was launched in 2004. NEESPI sought to elucidate all aspects of ongoing environmental change, to inform societies and, thus, to better prepare societies for future developments. A key principle of NEFI is that these developments must now be secured through science-based strategies co-designed with regional decision-makers to lead their societies to prosperity in the face of environmental and institutional challenges. NEESPI scientific research, data, and models have created a solid knowledge base to support the NEFI program. This paper presents the NEFI research vision consensus based on that knowledge. It provides the reader with samples of recent accomplishments in regional studies and formulates new NEFI science questions. To address these questions, nine research foci are identified and their selections are briefly justified. These foci include warming of the Arctic; changing frequency, pattern, and intensity of extreme and inclement environmental conditions; retreat of the cryosphere; changes in terrestrial water cycles; changes in the biosphere; pressures on land use; changes in infrastructure; societal actions in response to environmental change; and quantification of Northern Eurasia’s role in the global Earth system. Powerful feedbacks between the Earth and human systems in Northern Eurasia (e.g., mega-fires, droughts, depletion of the cryosphere essential for water supply, retreat of sea ice) result from past and current human activities (e.g., large-scale water withdrawals, land use, and governance change) and potentially restrict or provide new opportunities for future human activities. Therefore, we propose that integrated assessment models are needed as the final stage of global change assessment. The overarching goal of this NEFI modeling effort will enable evaluation of economic decisions in response to changing environmental conditions and justification of mitigation and adaptation efforts

    Regeneration in gap models: priority issues for studying forest responses to climate change

    Get PDF
    Recruitment algorithms in forest gap models are examined with particular regard to their suitability for simulating forest ecosystem responses to a changing climate. The traditional formulation of recruitment is found limiting in three areas. First, the aggregation of different regeneration stages (seed production, dispersal, storage, germination and seedling establishment) is likely to result in less accurate predictions of responses as compared to treating each stage separately. Second, the relatedassumptions that seeds of all species are uniformly available and that environmental conditions are homogeneous, are likely to cause overestimates of future species diversity and forest migration rates. Third, interactions between herbivores (ungulates and insect pests) and forest vegetation are a big unknown with potentially serious impacts in many regions. Possible strategies for developing better gap model representations for the climate-sensitive aspects of each of these key areas are discussed. A working example of a relatively new model that addresses some of these limitations is also presented for each case. We conclude that better models of regeneration processes are desirable for predicting effects of climate change, but that it is presently impossible to determine what improvements can be expected without carrying out rigorous tests for each new formulation

    Understanding of Coupled Terrestrial Carbon, Nitrogen and Water Dynamics—An Overview

    Get PDF
    Coupled terrestrial carbon (C), nitrogen (N) and hydrological processes play a crucial role in the climate system, providing both positive and negative feedbacks to climate change. In this review we summarize published research results to gain an increased understanding of the dynamics between vegetation and atmosphere processes. A variety of methods, including monitoring (e.g., eddy covariance flux tower, remote sensing, etc.) and modeling (i.e., ecosystem, hydrology and atmospheric inversion modeling) the terrestrial carbon and water budgeting, are evaluated and compared. We highlight two major research areas where additional research could be focused: (i) Conceptually, the hydrological and biogeochemical processes are closely linked, however, the coupling processes between terrestrial C, N and hydrological processes are far from well understood; and (ii) there are significant uncertainties in estimates of the components of the C balance, especially at landscape and regional scales. To address these two questions, a synthetic research framework is needed which includes both bottom-up and top-down approaches integrating scalable (footprint and ecosystem) models and a spatially nested hierarchy of observations which include multispectral remote sensing, inventories, existing regional clusters of eddy-covariance flux towers and CO2 mixing ratio towers and chambers

    The role of fire in the carbon dynamics of the boreal forest

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2007The boreal forest contains large reserves of carbon, and across this region wildfire is a common occurrence. To improve the understanding of how wildfire influences the carbon dynamics of this region, methods were developed to incorporate the spatial and temporal effects of fire into the Terrestrial Ecosystem Model (TEM). The historical role of fire on carbon dynamics of the boreal region was evaluated within the context of ecosystem responses to changing atmospheric COâ‚‚ and climate. These results show that the role of historical fire on boreal carbon dynamics resulted in a net carbon sink; however, fire plays a major role in the interannual and decadal scale variation of source/sink relationships. To estimate the effects of future fire on boreal carbon dynamics, spatially and temporally explicit empirical relationships between climate and fire were quantified. Fuel moisture, monthly severity rating, and air temperature explained a significant proportion of observed variability in annual area burned. These relationships were used to estimate annual area burned for future scenarios of climate change and were coupled to TEM to evaluate the role of future fire on the carbon dynamics of the North American boreal region for the 21st Century. Simulations with TEM indicate that boreal North America is a carbon sink in response to COâ‚‚ fertilization, climate variability, and fire, but an increase in fire leads to a decrease in the sink strength. While this study highlights the importance of fire on carbon dynamics in the boreal region, there are uncertainties in the effects of fire in TEM simulations. These uncertainties are associated with sparse fire data for northern Eurasia, uncertainty in estimating carbon consumption, and difficulty in verifying assumptions about the representation of fires that occurred prior to the start of the historical fire record. Future studies should incorporate the role of dynamic vegetation to more accurately represent post-fire successional processes, incorporate fire severity parameters that change in time and space, and integrate the role of other disturbances and their interactions with future fire regimes.The role of historical fire disturbance in the carbon dynamics of the pan-boreal region : a process-based analysis -- Modeling historical and future area burned of boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach -- The vulnerability of carbon storage in boreal North America during the 21st century to increases in wildfire activity -- Conclusion
    • …
    corecore