805 research outputs found

    Nanostructure determination from the pair distribution function: A parametric study of the INVERT approach

    Full text link
    We present a detailed study of the mechanism by which the INVERT method [Phys. Rev. Lett. 104, 125501] guides structure refinement of disordered materials. We present a number of different possible implementations of the central algorithm and explore the question of algorithm weighting. Our analysis includes quantification of the relative contributions of variance and fit-to-data terms during structure refinement, which leads us to study the roles of density fluctuations and configurational jamming in the RMC fitting process. We present a parametric study of the pair distribution function solution space for C60, a-Si and a-SiO2, which serves to highlight the difficulties faced in developing a transferable weighting scheme.Comment: 15 pages, 7 figures, formatted for JPCM (RMC issue

    Plasmonic nanoparticle monomers and dimers: From nano-antennas to chiral metamaterials

    Full text link
    We review the basic physics behind light interaction with plasmonic nanoparticles. The theoretical foundations of light scattering on one metallic particle (a plasmonic monomer) and two interacting particles (a plasmonic dimer) are systematically investigated. Expressions for effective particle susceptibility (polarizability) are derived, and applications of these results to plasmonic nanoantennas are outlined. In the long-wavelength limit, the effective macroscopic parameters of an array of plasmonic dimers are calculated. These parameters are attributable to an effective medium corresponding to a dilute arrangement of nanoparticles, i.e., a metamaterial where plasmonic monomers or dimers have the function of "meta-atoms". It is shown that planar dimers consisting of rod-like particles generally possess elliptical dichroism and function as atoms for planar chiral metamaterials. The fabricational simplicity of the proposed rod-dimer geometry can be used in the design of more cost-effective chiral metamaterials in the optical domain.Comment: submitted to Appl. Phys.

    Block shape in historic cities: a classification based on compactness and fragmentation

    Get PDF

    Shape it until you make it: A conceptual foundation for efforts to analyze and shape technological innovation

    Get PDF
    These are times of accelerating climate change and mass extinction of species on planet Earth. We are in the midst of an ecological crisis that will have profound consequences for human society and its natural environment. While the conditions for life have changed abruptly in the past, the current situation is characterized by the increasing power of a single species. Human beings are not only to blame for the unsustainable practices that brought us here, but also capable of harnessing their combined ingenuity to develop technology that may reduce environmental impacts and provide additional benefits for society. At the same time, the answer to the ecological crisis and other grand challenges is not found in the blind expansion of new technologies. Our success in accomplishing social and environmental objectives rather depends on how, where and when innovation influences patterns of production and consumption. This calls into question the focus of academics and policymakers on stimulating technological innovation. And it highlights the need for analytical tools that can be used to explore how policymakers and other actors may shape the direction of change. The research presented in this thesis therefore aims to develop a conceptual foundation for analyzing and shaping technological innovation. This effort draws on three qualitative case studies that investigate emerging renewable energy technologies from a Swedish perspective. The thesis is situated in the sustainability transitions research community and takes the literature on technological innovation systems as a theoretical point of departure. However, the research adopts a critical perspective and gradually departs from the core concepts used in this literature, over the course of a learning process that unfolds in five appended research papers.In the end, the thesis proposes the technological systems framework as a set of concepts that offers a multidimensional perspective on the dynamics and outcomes of technological innovation. It also presents empirical findings that demonstrate different development trajectories, reveal some of their underlying dynamics and highlight policy implications. This \ua0will hopefully contribute to an ongoing shift in academia and politics – from stimulating the expansion of new technologies, to shaping the direction of change

    Deconstructing the glass transition through critical experiments on colloids

    Full text link
    The glass transition is the most enduring grand-challenge problem in contemporary condensed matter physics. Here, we review the contribution of colloid experiments to our understanding of this problem. First, we briefly outline the success of colloidal systems in yielding microscopic insights into a wide range of condensed matter phenomena. In the context of the glass transition, we demonstrate their utility in revealing the nature of spatial and temporal dynamical heterogeneity. We then discuss the evidence from colloid experiments in favor of various theories of glass formation that has accumulated over the last two decades. In the next section, we expound on the recent paradigm shift in colloid experiments from an exploratory approach to a critical one aimed at distinguishing between predictions of competing frameworks. We demonstrate how this critical approach is aided by the discovery of novel dynamical crossovers within the range accessible to colloid experiments. We also highlight the impact of alternate routes to glass formation such as random pinning, trajectory space phase transitions and replica coupling on current and future research on the glass transition. We conclude our review by listing some key open challenges in glass physics such as the comparison of growing static lengthscales and the preparation of ultrastable glasses, that can be addressed using colloid experiments.Comment: 137 pages, 45 figure

    Glassy dynamics of kinetically constrained models

    Full text link
    We review the use of kinetically constrained models (KCMs) for the study of dynamics in glassy systems. The characteristic feature of KCMs is that they have trivial, often non-interacting, equilibrium behaviour but interesting slow dynamics due to restrictions on the allowed transitions between configurations. The basic question which KCMs ask is therefore how much glassy physics can be understood without an underlying ``equilibrium glass transition''. After a brief review of glassy phenomenology, we describe the main model classes, which include spin-facilitated (Ising) models, constrained lattice gases, models inspired by cellular structures such as soap froths, models obtained via mappings from interacting systems without constraints, and finally related models such as urn, oscillator, tiling and needle models. We then describe the broad range of techniques that have been applied to KCMs, including exact solutions, adiabatic approximations, projection and mode-coupling techniques, diagrammatic approaches and mappings to quantum systems or effective models. Finally, we give a survey of the known results for the dynamics of KCMs both in and out of equilibrium, including topics such as relaxation time divergences and dynamical transitions, nonlinear relaxation, aging and effective temperatures, cooperativity and dynamical heterogeneities, and finally non-equilibrium stationary states generated by external driving. We conclude with a discussion of open questions and possibilities for future work.Comment: 137 pages. Additions to section on dynamical heterogeneities (5.5, new pages 110 and 112), otherwise minor corrections, additions and reference updates. Version to be published in Advances in Physic

    Thermodynamic driving forces in protein regulation studied by molecular dynamics simulations.

    No full text
    corecore