1,243 research outputs found

    A coupled approximate deconvolution and dynamic mixed scale model for large-eddy simulation

    Full text link
    Large-eddy simulations of incompressible Newtonian fluid flows with approximate deconvolution models based on the van Cittert method are reported. The Legendre spectral element method is used for the spatial discretization to solve the filtered Navier--Stokes equations. A novel variant of approximate deconvolution models blended with a mixed scale model using a dynamic evaluation of the subgrid-viscosity constant is proposed. This model is validated by comparing the large-eddy simulation with the direct numerical simulation of the flow in a lid-driven cubical cavity, performed at a Reynolds number of 12'000. Subgrid modeling in the case of a flow with coexisting laminar, transitional and turbulent zones such as the lid-driven cubical cavity flow represents a challenging problem. Moreover, the coupling with the spectral element method having very low numerical dissipation and dispersion builds a well suited framework to analyze the efficiency of a subgrid model. First- and second-order statistics obtained using this new model are showing very good agreement with the direct numerical simulation. Filtering operations rely on an invertible filter applied in a modal basis and preserving the C0-continuity across elements. No clipping on dynamic parameters was needed to preserve numerical stability

    A LES-Langevin model for turbulence

    Full text link
    We propose a new model of turbulence for use in large-eddy simulations (LES). The turbulent force, represented here by the turbulent Lamb vector, is divided in two contributions. The contribution including only subfilter fields is deterministically modeled through a classical eddy-viscosity. The other contribution including both filtered and subfilter scales is dynamically computed as solution of a generalized (stochastic) Langevin equation. This equation is derived using Rapid Distortion Theory (RDT) applied to the subfilter scales. The general friction operator therefore includes both advection and stretching by the resolved scale. The stochastic noise is derived as the sum of a contribution from the energy cascade and a contribution from the pressure. The LES model is thus made of an equation for the resolved scale, including the turbulent force, and a generalized Langevin equation integrated on a twice-finer grid. The model is validated by comparison to DNS and is tested against classical LES models for isotropic homogeneous turbulence, based on eddy viscosity. We show that even in this situation, where no walls are present, our inclusion of backscatter through the Langevin equation results in a better description of the flow.Comment: 18 pages, 14 figures, to appear in Eur. Phys. J.

    Reconstruction subgrid models for nonpremixed combustion

    Get PDF
    Large-eddy simulation of combustion problems involves highly nonlinear terms that, when filtered, result in a contribution from subgrid fluctuations of scalars, Z, to the dynamics of the filtered value. This subgrid contribution requires modeling. Reconstruction models try to recover as much information as possible from the resolved field Z, based on a deconvolution procedure to obtain an intermediate field ZM. The approximate reconstruction using moments (ARM) method combines approximate reconstruction, a purely mathematical procedure, with additional physics-based information required to match specific scalar moments, in the simplest case, the Reynolds-averaged value of the subgrid variance. Here, results from the analysis of the ARM model in the case of a spatially evolving turbulent plane jet are presented. A priori and a posteriori evaluations using data from direct numerical simulation are carried out. The nonlinearities considered are representative of reacting flows: power functions, the dependence of the density on the mixture fraction (relevant for conserved scalar approaches) and the Arrhenius nonlinearity (very localized in Z space). Comparisons are made against the more popular beta probability density function (PDF) approach in the a priori analysis, trying to define ranges of validity for each approach. The results show that the ARM model is able to capture the subgrid part of the variance accurately over a wide range of filter sizes and performs well for the different nonlinearities, giving uniformly better predictions than the beta PDF for the polynomial case. In the case of the density and Arrhenius nonlinearities, the relative performance of the ARM and traditional PDF approaches depends on the size of the subgrid variance with respect to a characteristic scale of each function. Furthermore, the sources of error associated with the ARM method are considered and analytical bounds on that error are obtained
    • …
    corecore