46 research outputs found

    Kernel Approximation on Manifolds I: Bounding the Lebesgue Constant

    Get PDF
    The purpose of this paper is to establish that for any compact, connected C^{\infty} Riemannian manifold there exists a robust family of kernels of increasing smoothness that are well suited for interpolation. They generate Lagrange functions that are uniformly bounded and decay away from their center at an exponential rate. An immediate corollary is that the corresponding Lebesgue constant will be uniformly bounded with a constant whose only dependence on the set of data sites is reflected in the mesh ratio, which measures the uniformity of the data. The analysis needed for these results was inspired by some fundamental work of Matveev where the Sobolev decay of Lagrange functions associated with certain kernels on \Omega \subset R^d was obtained. With a bit more work, one establishes the following: Lebesgue constants associated with surface splines and Sobolev splines are uniformly bounded on R^d provided the data sites \Xi are quasi-uniformly distributed. The non-Euclidean case is more involved as the geometry of the underlying surface comes into play. In addition to establishing bounded Lebesgue constants in this setting, a "zeros lemma" for compact Riemannian manifolds is established.Comment: 33 pages, 2 figures, new title, accepted for publication in SIAM J. on Math. Ana

    Approximation orders of shift-invariant subspaces of W2s(Rd)W^s_2({\Bbb R}^d)

    Full text link
    We extend the existing theory of approximation orders provided by shift-invariant subspaces of L2L_2 to the setting of Sobolev spaces, provide treatment of L2L_2 cases that have not been covered before, and apply our results to determine approximation order of solutions to a refinement equation with a higher-dimensional solution space.Comment: 49 page

    theoretical aspects and numerical results

    Get PDF
    The main aim of this work was to obtain an approximate solution of the seismic traveltime tomography problems with the help of splines based on reproducing kernel Sobolev spaces. In order to be able to apply the spline approximation concept to surface wave as well as to body wave tomography problems, the spherical spline approximation concept was extended for the case where the domain of the function to be approximated is an arbitrary compact set in R^n and a finite number of discontinuity points is allowed. We present applications of such spline method to seismic surface wave as well as body wave tomography, and discuss the theoretical and numerical aspects of such applications. Moreover, we run numerous numerical tests that justify the theoretical considerations.thesi

    Quarklets: Construction and Application in Adaptive Frame Methods

    Get PDF
    This thesis is concerned with the construction and application of a new class of functions called quarklets. With the intention of constructing an adaptive hp-method based on wavelets, they do arise out of the latter through an enrichment with polynomials. The starting point for the construction is the real axis. There, we derive frames for the Sobolev space H^s(R). Through a boundary adaptation, tensorization and the application of a scale-dependent extension operator we are even able to construct quarklet frames on very general domains in multiple spatial dimensions. With these frames at hand we can discretize linear elliptic operator equations in a stable way. The discrete system can be handled with an adaptive numerical scheme. For this purpose it is necessary to show the compressibility of the stiffness matrix. We do this for the prototypical example of the Poisson equation independently of the dimension and in this way we are able to prove the optimality of the adaptive scheme. By the latter we mean that the approximation rate of the best n-term quarklet approximation is realized by the scheme. Finally, we carry out some numerical experiments in one and two spatial dimensions, where the theoretical findings are validated in practice and moreover, the value of the quarklets in the numerical scheme becomes visible by analysing the quarklet coefficients of the approximate solutions

    Error analysis of the Galerkin FEM in L 2 -based norms for problems with layers: On the importance, conception and realization of balancing

    Get PDF
    In the present thesis it is shown that the most natural choice for a norm for the analysis of the Galerkin FEM, namely the energy norm, fails to capture the boundary layer functions arising in certain reaction-diffusion problems. In view of a formal Definition such reaction-diffusion problems are not singularly perturbed with respect to the energy norm. This observation raises two questions: 1. Does the Galerkin finite element method on standard meshes yield satisfactory approximations for the reaction-diffusion problem with respect to the energy norm? 2. Is it possible to strengthen the energy norm in such a way that the boundary layers are captured and that it can be reconciled with a robust finite element method, i.e.~robust with respect to this strong norm? In Chapter 2 we answer the first question. We show that the Galerkin finite element approximation converges uniformly in the energy norm to the solution of the reaction-diffusion problem on standard shape regular meshes. These results are completely new in two dimensions and are confirmed by numerical experiments. We also study certain convection-diffusion problems with characterisitc layers in which some layers are not well represented in the energy norm. These theoretical findings, validated by numerical experiments, have interesting implications for adaptive methods. Moreover, they lead to a re-evaluation of other results and methods in the literature. In 2011 Lin and Stynes were the first to devise a method for a reaction-diffusion problem posed in the unit square allowing for uniform a priori error estimates in an adequate so-called balanced norm. Thus, the aforementioned second question is answered in the affirmative. Obtaining a non-standard weak formulation by testing also with derivatives of the test function is the key idea which is related to the H^1-Galerkin methods developed in the early 70s. Unfortunately, this direct approach requires excessive smoothness of the finite element space considered. Lin and Stynes circumvent this problem by rewriting their problem into a first order system and applying a mixed method. Now the norm captures the layers. Therefore, they need to be resolved by some layer-adapted mesh. Lin and Stynes obtain optimal error estimates with respect to the balanced norm on Shishkin meshes. However, their method is unable to preserve the symmetry of the problem and they rely on the Raviart-Thomas element for H^div-conformity. In Chapter 4 of the thesis a new continuous interior penalty (CIP) method is present, embracing the approach of Lin and Stynes in the context of a broken Sobolev space. The resulting method induces a balanced norm in which uniform error estimates are proven. In contrast to the mixed method the CIP method uses standard Q_2-elements on the Shishkin meshes. Both methods feature improved stability properties in comparison with the Galerkin FEM. Nevertheless, the latter also yields approximations which can be shown to converge to the true solution in a balanced norm uniformly with respect to diffusion parameter. Again, numerical experiments are conducted that agree with the theoretical findings. In every finite element analysis the approximation error comes into play, eventually. If one seeks to prove any of the results mentioned on an anisotropic family of Shishkin meshes, one will need to take advantage of the different element sizes close to the boundary. While these are ideally suited to reflect the solution behavior, the error analysis is more involved and depends on anisotropic interpolation error estimates. In Chapter 3 the beautiful theory of Apel and Dobrowolski is extended in order to obtain anisotropic interpolation error estimates for macro-element interpolation. This also sheds light on fundamental construction principles for such operators. The thesis introduces a non-standard finite element space that consists of biquadratic C^1-finite elements on macro-elements over tensor product grids, which can be viewed as a rectangular version of the C^1-Powell-Sabin element. As an application of the general theory developed, several interpolation operators mapping into this FE space are analyzed. The insight gained can also be used to prove anisotropic error estimates for the interpolation operator induced by the well-known C^1-Bogner-Fox-Schmidt element. A special modification of Scott-Zhang type and a certain anisotropic interpolation operator are also discussed in detail. The results of this chapter are used to approximate the solution to a recation-diffusion-problem on a Shishkin mesh that features highly anisotropic elements. The obtained approximation features continuous normal derivatives across certain edges of the mesh, enabling the analysis of the aforementioned CIP method.:Notation 1 Introduction 2 Galerkin FEM error estimation in weak norms 2.1 Reaction-diffusion problems 2.2 A convection-diffusion problem with weak characteristic layers and a Neumann outflow condition 2.3 A mesh that resolves only part of the exponential layer and neglects the weaker characteristic layers 2.3.1 Weakly imposed characteristic boundary conditions 2.4 Numerical experiments 2.4.1 A reaction-diffusion problem with boundary layers 2.4.2 A reaction-diffusion problem with an interior layer 2.4.3 A convection-diffusion problem with characteristic layers and a Neumann outflow condition 2.4.4 A mesh that resolves only part of the exponential layer and neglects the weaker characteristic layers 3 Macro-interpolation on tensor product meshes 3.1 Introduction 3.2 Univariate C1-P2 macro-element interpolation 3.3 C1-Q2 macro-element interpolation on tensor product meshes 3.4 A theory on anisotropic macro-element interpolation 3.5 C1 macro-interpolation on anisotropic tensor product meshes 3.5.1 A reduced macro-element interpolation operator 3.5.2 The full C1-Q2 interpolation operator 3.5.3 A C1-Q2 macro-element quasi-interpolation operator of Scott-Zhang type on tensor product meshes 3.5.4 Summary: anisotropic C1 (quasi-)interpolation error estimates 3.6 An anisotropic macro-element of tensor product type 3.7 Application of macro-element interpolation on a tensor product Shishkin mesh 4 Balanced norm results for reaction-diffusion 4.1 The balanced finite element method of Lin and Stynes 4.2 A C0 interior penalty method 4.3 Galerkin finite element method 4.3.1 L2-norm error bounds and supercloseness 4.3.2 Maximum-norm error bounds 4.4 Numerical verification 4.5 Further developments and summary Reference

    Corner Singularities and Analytic Regularity for Linear Elliptic Systems. Part I: Smooth domains.

    No full text
    211 pagesThis is a preliminary version of the first part of a book project that will consist of four parts. We are making it available in electronic form now, because there is a demand for some of the technical tools it provides, in particular a detailed presentation of analytic elliptic regularity estimates in the neighborhood of smooth boundary points. In our proof of analytic a priori estimates, besides the classical Morrey-Nirenberg techniques of nested open sets and difference quotients, a new ingredient is a Cauchy-type estimate for coordinate transformations based on the FaĂ  di Bruno formula for derivatives of composite functions. This first part can also serve as a general introduction into the subject of regularity for linear elliptic systems with smooth coefficients on smooth domains. We treat regularity in Sobolev spaces for a general class of second order elliptic systems and corresponding boundary operators that cover, in particular, many elliptic problems in variational form. Starting from the regularity of the variational solution, we follow the improvement of the regularity of the solution as the regularity of the data is raised, first for low regularity, and then going to ever higher regularity and finally to analytic regularity. Supported by the discussion of many examples, some of them new, such as the variational formulation of the electromagnetic impedance problem, we hope to provide new insight into this classical subject. We hope to be able to finish the whole project soon and to publish all four parts, but in the meantime this first part can be used as a starting point for proofs of elliptic regularity estimates in more complicated situations

    Reduced Order and Surrogate Models for Gravitational Waves

    Full text link
    We present an introduction to some of the state of the art in reduced order and surrogate modeling in gravitational wave (GW) science. Approaches that we cover include Principal Component Analysis, Proper Orthogonal Decomposition, the Reduced Basis approach, the Empirical Interpolation Method, Reduced Order Quadratures, and Compressed Likelihood evaluations. We divide the review into three parts: representation/compression of known data, predictive models, and data analysis. The targeted audience is that one of practitioners in GW science, a field in which building predictive models and data analysis tools that are both accurate and fast to evaluate, especially when dealing with large amounts of data and intensive computations, are necessary yet can be challenging. As such, practical presentations and, sometimes, heuristic approaches are here preferred over rigor when the latter is not available. This review aims to be self-contained, within reasonable page limits, with little previous knowledge (at the undergraduate level) requirements in mathematics, scientific computing, and other disciplines. Emphasis is placed on optimality, as well as the curse of dimensionality and approaches that might have the promise of beating it. We also review most of the state of the art of GW surrogates. Some numerical algorithms, conditioning details, scalability, parallelization and other practical points are discussed. The approaches presented are to large extent non-intrusive and data-driven and can therefore be applicable to other disciplines. We close with open challenges in high dimension surrogates, which are not unique to GW science.Comment: Invited article for Living Reviews in Relativity. 93 page
    corecore