28,182 research outputs found

    Application of Machine Learning in Wireless Networks: Key Techniques and Open Issues

    Full text link
    As a key technique for enabling artificial intelligence, machine learning (ML) is capable of solving complex problems without explicit programming. Motivated by its successful applications to many practical tasks like image recognition, both industry and the research community have advocated the applications of ML in wireless communication. This paper comprehensively surveys the recent advances of the applications of ML in wireless communication, which are classified as: resource management in the MAC layer, networking and mobility management in the network layer, and localization in the application layer. The applications in resource management further include power control, spectrum management, backhaul management, cache management, beamformer design and computation resource management, while ML based networking focuses on the applications in clustering, base station switching control, user association and routing. Moreover, literatures in each aspect is organized according to the adopted ML techniques. In addition, several conditions for applying ML to wireless communication are identified to help readers decide whether to use ML and which kind of ML techniques to use, and traditional approaches are also summarized together with their performance comparison with ML based approaches, based on which the motivations of surveyed literatures to adopt ML are clarified. Given the extensiveness of the research area, challenges and unresolved issues are presented to facilitate future studies, where ML based network slicing, infrastructure update to support ML based paradigms, open data sets and platforms for researchers, theoretical guidance for ML implementation and so on are discussed.Comment: 34 pages,8 figure

    Survey of Important Issues in UAV Communication Networks

    Full text link
    Unmanned Aerial Vehicles (UAVs) have enormous potential in the public and civil domains. These are particularly useful in applications where human lives would otherwise be endangered. Multi-UAV systems can collaboratively complete missions more efficiently and economically as compared to single UAV systems. However, there are many issues to be resolved before effective use of UAVs can be made to provide stable and reliable context-specific networks. Much of the work carried out in the areas of Mobile Ad Hoc Networks (MANETs), and Vehicular Ad Hoc Networks (VANETs) does not address the unique characteristics of the UAV networks. UAV networks may vary from slow dynamic to dynamic; have intermittent links and fluid topology. While it is believed that ad hoc mesh network would be most suitable for UAV networks yet the architecture of multi-UAV networks has been an understudied area. Software Defined Networking (SDN) could facilitate flexible deployment and management of new services and help reduce cost, increase security and availability in networks. Routing demands of UAV networks go beyond the needs of MANETS and VANETS. Protocols are required that would adapt to high mobility, dynamic topology, intermittent links, power constraints and changing link quality. UAVs may fail and the network may get partitioned making delay and disruption tolerance an important design consideration. Limited life of the node and dynamicity of the network leads to the requirement of seamless handovers where researchers are looking at the work done in the areas of MANETs and VANETs, but the jury is still out. As energy supply on UAVs is limited, protocols in various layers should contribute towards greening of the network. This article surveys the work done towards all of these outstanding issues, relating to this new class of networks, so as to spur further research in these areas.Comment: arXiv admin note: substantial text overlap with arXiv:1304.3904 by other author

    Dynamic Clustering and Sleep Mode Strategies for Small Cell Networks

    Full text link
    In this paper, a novel cluster-based approach for optimizing the energy efficiency of wireless small cell networks is proposed. A dynamic mechanism based on the spectral clustering technique is proposed to dynamically form clusters of small cell base stations. Such clustering enables intra-cluster coordination among the base stations for optimizing the downlink performance through load balancing, while satisfying users' quality-of-service requirements. In the proposed approach, the clusters use an opportunistic base station sleep-wake switching mechanism to strike a balance between delay and energy consumption. The inter-cluster interference affects the performance of the clusters and their choices of active or sleep state. Due to the lack of inter-cluster communications, the clusters have to compete with each other to make decisions on improving the energy efficiency. This competition is formulated as a noncooperative game among the clusters that seek to minimize a cost function which captures the tradeoff between energy expenditure and load. To solve this game, a distributed learning algorithm is proposed using which the clusters autonomously choose their optimal transmission strategies. Simulation results show that the proposed approach yields significant performance gains in terms of reduced energy expenditures up to 40% and reduced load up to 23% compared to conventional approaches.Comment: 5 pages, 4 figures, 1 table, ISWCS 2014 (published), pp. 934-938, Aug. 2014. arXiv admin note: text overlap with arXiv:1604.0875

    Congestion-Aware Distributed Network Selection for Integrated Cellular and Wi-Fi Networks

    Full text link
    Intelligent network selection plays an important role in achieving an effective data offloading in the integrated cellular and Wi-Fi networks. However, previously proposed network selection schemes mainly focused on offloading as much data traffic to Wi-Fi as possible, without systematically considering the Wi-Fi network congestion and the ping-pong effect, both of which may lead to a poor overall user quality of experience. Thus, in this paper, we study a more practical network selection problem by considering both the impacts of the network congestion and switching penalties. More specifically, we formulate the users' interactions as a Bayesian network selection game (NSG) under the incomplete information of the users' mobilities. We prove that it is a Bayesian potential game and show the existence of a pure Bayesian Nash equilibrium that can be easily reached. We then propose a distributed network selection (DNS) algorithm based on the network congestion statistics obtained from the operator. Furthermore, we show that computing the optimal centralized network allocation is an NP-hard problem, which further justifies our distributed approach. Simulation results show that the DNS algorithm achieves the highest user utility and a good fairness among users, as compared with the on-the-spot offloading and cellular-only benchmark schemes

    Analysis of Location Management Schemes for MANET using Synthetic Mobility Models

    Full text link
    In the performance evaluation of a protocol for an ad hoc network, the protocol should be tested under realistic conditions including, but not limited to, a sensible transmission range, limited buffer space for the storage of messages, representative data traffic models, and realistic movements of the mobile users and several mobility models that represent mobile nodes whose movements are dependent on each other (i.e., group mobility models ).The goal of this paper is to simulate the movements of mobile nodes within a network and present a number of mobility models in order to demonstrate its effect on Location management scheme for mobile ad hoc network or personal communication services networks. Specifically, to illustrate how the performance results of an ad hoc network protocol drastically change as a result of changing the mobility model simulated. Location management is a fundamental problem in personal communication services network. The current standard of location management is HLR/VLR scheme. It has been observed that the performance of any location management scheme depends on space requirements, bandwidth requirements and time requirements. To avoid certain drawbacks in HLR/VLR scheme, many approaches including hierarchical approaches have been suggested. Working set idea is chosen to analyze its performance for location management in PCS networks. Due to inadequacy of standard network simulators to provide the output in the format desired, a new location management simulator can be built. Two variants of working set idea viz. Working set scheme for HLR/VLR approach and working set scheme for hierarchical approach can be used and then compare the performance of HLR/VLR scheme and working set scheme using the results obtained by the simulator with respect to already available mobile activity traces.Comment: 7 pages, 2 figure

    Reconfigurable Wireless Networks

    Full text link
    Driven by the advent of sophisticated and ubiquitous applications, and the ever-growing need for information, wireless networks are without a doubt steadily evolving into profoundly more complex and dynamic systems. The user demands are progressively rampant, while application requirements continue to expand in both range and diversity. Future wireless networks, therefore, must be equipped with the ability to handle numerous, albeit challenging requirements. Network reconfiguration, considered as a prominent network paradigm, is envisioned to play a key role in leveraging future network performance and considerably advancing current user experiences. This paper presents a comprehensive overview of reconfigurable wireless networks and an in-depth analysis of reconfiguration at all layers of the protocol stack. Such networks characteristically possess the ability to reconfigure and adapt their hardware and software components and architectures, thus enabling flexible delivery of broad services, as well as sustaining robust operation under highly dynamic conditions. The paper offers a unifying framework for research in reconfigurable wireless networks. This should provide the reader with a holistic view of concepts, methods, and strategies in reconfigurable wireless networks. Focus is given to reconfigurable systems in relatively new and emerging research areas such as cognitive radio networks, cross-layer reconfiguration and software-defined networks. In addition, modern networks have to be intelligent and capable of self-organization. Thus, this paper discusses the concept of network intelligence as a means to enable reconfiguration in highly complex and dynamic networks. Finally, the paper is supported with several examples and case studies showing the tremendous impact of reconfiguration on wireless networks.Comment: 28 pages, 26 figures; Submitted to the Proceedings of the IEEE (a special issue on Reconfigurable Systems

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Energy and Information Management of Electric Vehicular Network: A Survey

    Full text link
    The connected vehicle paradigm empowers vehicles with the capability to communicate with neighboring vehicles and infrastructure, shifting the role of vehicles from a transportation tool to an intelligent service platform. Meanwhile, the transportation electrification pushes forward the electric vehicle (EV) commercialization to reduce the greenhouse gas emission by petroleum combustion. The unstoppable trends of connected vehicle and EVs transform the traditional vehicular system to an electric vehicular network (EVN), a clean, mobile, and safe system. However, due to the mobility and heterogeneity of the EVN, improper management of the network could result in charging overload and data congestion. Thus, energy and information management of the EVN should be carefully studied. In this paper, we provide a comprehensive survey on the deployment and management of EVN considering all three aspects of energy flow, data communication, and computation. We first introduce the management framework of EVN. Then, research works on the EV aggregator (AG) deployment are reviewed to provide energy and information infrastructure for the EVN. Based on the deployed AGs, we present the research work review on EV scheduling that includes both charging and vehicle-to-grid (V2G) scheduling. Moreover, related works on information communication and computing are surveyed under each scenario. Finally, we discuss open research issues in the EVN

    Metadata Challenge for Query Processing Over Heterogeneous Wireless Sensor Network

    Full text link
    Wireless sensor networks become integral part of our life. These networks can be used for monitoring the data in various domain due to their flexibility and functionality. Query processing and optimization in the WSN is a very challenging task because of their energy and memory constraint. In this paper, first our focus is to review the different approaches that have significant impacts on the development of query processing techniques for WSN. Finally, we aim to illustrate the existing approach in popular query processing engines with future research challenges in query optimization.Comment: 15 Page

    A survey on data and transaction management in mobile databases

    Full text link
    The popularity of the Mobile Database is increasing day by day as people need information even on the move in the fast changing world. This database technology permits employees using mobile devices to connect to their corporate networks, hoard the needed data, work in the disconnected mode and reconnect to the network to synchronize with the corporate database. In this scenario, the data is being moved closer to the applications in order to improve the performance and autonomy. This leads to many interesting problems in mobile database research and Mobile Database has become a fertile land for many researchers. In this paper a survey is presented on data and Transaction management in Mobile Databases from the year 2000 onwards. The survey focuses on the complete study on the various types of Architectures used in Mobile databases and Mobile Transaction Models. It also addresses the data management issues namely Replication and Caching strategies and the transaction management functionalities such as Concurrency Control and Commit protocols, Synchronization, Query Processing, Recovery and Security. It also provides Research Directions in Mobile databases.Comment: 20 Pages; International Journal of Database Management Systems (IJDMS) Vol.4, No.5, October 2012. arXiv admin note: text overlap with arXiv:0908.0076, arXiv:1005.1747, arXiv:1108.6195 by other author
    • …
    corecore