28 research outputs found

    Optimization under uncertainty and risk: Quadratic and copositive approaches

    Get PDF
    Robust optimization and stochastic optimization are the two main paradigms for dealing with the uncertainty inherent in almost all real-world optimization problems. The core principle of robust optimization is the introduction of parameterized families of constraints. Sometimes, these complicated semi-infinite constraints can be reduced to finitely many convex constraints, so that the resulting optimization problem can be solved using standard procedures. Hence flexibility of robust optimization is limited by certain convexity requirements on various objects. However, a recent strain of literature has sought to expand applicability of robust optimization by lifting variables to a properly chosen matrix space. Doing so allows to handle situations where convexity requirements are not met immediately, but rather intermediately. In the domain of (possibly nonconvex) quadratic optimization, the principles of copositive optimization act as a bridge leading to recovery of the desired convex structures. Copositive optimization has established itself as a powerful paradigm for tackling a wide range of quadratically constrained quadratic optimization problems, reformulating them into linear convex-conic optimization problems involving only linear constraints and objective, plus constraints forcing membership to some matrix cones, which can be thought of as generalizations of the positive-semidefinite matrix cone. These reformulations enable application of powerful optimization techniques, most notably convex duality, to problems which, in their original form, are highly nonconvex. In this text we want to offer readers an introduction and tutorial on these principles of copositive optimization, and to provide a review and outlook of the literature that applies these to optimization problems involving uncertainty

    Positive semidefinite approximations to the cone of copositive kernels

    Full text link
    It has been shown that the maximum stable set problem in some infinite graphs, and the kissing number problem in particular, reduces to a minimization problem over the cone of copositive kernels. Optimizing over this infinite dimensional cone is not tractable, and approximations of this cone have been hardly considered in literature. We propose two convergent hierarchies of subsets of copositive kernels, in terms of non-negative and positive definite kernels. We use these hierarchies and representation theorems for invariant positive definite kernels on the sphere to construct new SDP-based bounds on the kissing number. This results in fast-to-compute upper bounds on the kissing number that lie between the currently existing LP and SDP bounds.Comment: 29 pages, 2 tables, 1 figur
    corecore