6,348 research outputs found

    Sparse least squares support vector regression for nonstationary systems

    Get PDF
    A new adaptive sparse least squares support vector regression algorithm, referred to as SLSSVR has been introduced for the adaptive modeling of nonstationary systems. Using a sliding window of recent data set of size N to track t he non-stationary characteristics of the incoming data, our adaptive model is initially formulated based on least squares support vector regression with forgetting factor (without bias term). In order to obtain a sparse model in which some parameters are exactly zeros, a l 1 penalty was applied in parameter estimation in the dual problem. Furthermore we exploit the fact that since the associated system/kernel matrix in positive definite, the dual solution of least squares support vector machine without bias term, can be solved iteratively with guaranteed convergence. Furthermore since the models between two consecutive time steps there are (N-1) shared kernels/parameters, the online solution can be obtained efficiently using coordinate descent algorithm in the form of Gauss-Seidel algorithm with minimal number of iterations. This allows a very sparse model per time step to be obtained very efficiently, avoiding expensive matrix inversion. The real stock market dataset and simulated examples have shown that the proposed approaches can lead to superior performances in comparison with the linear recursive least algorithm and a number of online non-linear approaches in terms of modelling performance and model size

    The Graphical Lasso: New Insights and Alternatives

    Full text link
    The graphical lasso \citep{FHT2007a} is an algorithm for learning the structure in an undirected Gaussian graphical model, using β„“1\ell_1 regularization to control the number of zeros in the precision matrix {\B\Theta}={\B\Sigma}^{-1} \citep{BGA2008,yuan_lin_07}. The {\texttt R} package \GL\ \citep{FHT2007a} is popular, fast, and allows one to efficiently build a path of models for different values of the tuning parameter. Convergence of \GL\ can be tricky; the converged precision matrix might not be the inverse of the estimated covariance, and occasionally it fails to converge with warm starts. In this paper we explain this behavior, and propose new algorithms that appear to outperform \GL. By studying the "normal equations" we see that, \GL\ is solving the {\em dual} of the graphical lasso penalized likelihood, by block coordinate ascent; a result which can also be found in \cite{BGA2008}. In this dual, the target of estimation is \B\Sigma, the covariance matrix, rather than the precision matrix \B\Theta. We propose similar primal algorithms \PGL\ and \DPGL, that also operate by block-coordinate descent, where \B\Theta is the optimization target. We study all of these algorithms, and in particular different approaches to solving their coordinate sub-problems. We conclude that \DPGL\ is superior from several points of view.Comment: This is a revised version of our previous manuscript with the same name ArXiv id: http://arxiv.org/abs/1111.547

    Practical Inexact Proximal Quasi-Newton Method with Global Complexity Analysis

    Full text link
    Recently several methods were proposed for sparse optimization which make careful use of second-order information [10, 28, 16, 3] to improve local convergence rates. These methods construct a composite quadratic approximation using Hessian information, optimize this approximation using a first-order method, such as coordinate descent and employ a line search to ensure sufficient descent. Here we propose a general framework, which includes slightly modified versions of existing algorithms and also a new algorithm, which uses limited memory BFGS Hessian approximations, and provide a novel global convergence rate analysis, which covers methods that solve subproblems via coordinate descent

    L0 Sparse Inverse Covariance Estimation

    Full text link
    Recently, there has been focus on penalized log-likelihood covariance estimation for sparse inverse covariance (precision) matrices. The penalty is responsible for inducing sparsity, and a very common choice is the convex l1l_1 norm. However, the best estimator performance is not always achieved with this penalty. The most natural sparsity promoting "norm" is the non-convex l0l_0 penalty but its lack of convexity has deterred its use in sparse maximum likelihood estimation. In this paper we consider non-convex l0l_0 penalized log-likelihood inverse covariance estimation and present a novel cyclic descent algorithm for its optimization. Convergence to a local minimizer is proved, which is highly non-trivial, and we demonstrate via simulations the reduced bias and superior quality of the l0l_0 penalty as compared to the l1l_1 penalty
    • …
    corecore