477 research outputs found

    Design and validation of a medical robotic device system to control two collaborative robots for ultrasound-guided needle insertions

    Get PDF
    The percutaneous biopsy is a critical intervention for diagnosis and staging in cancer therapy. Robotic systems can improve the efficiency and outcome of such procedures while alleviating stress for physicians and patients. However, the high complexity of operation and the limited possibilities for robotic integration in the operating room (OR) decrease user acceptance and the number of deployed robots. Collaborative systems and standardized device communication may provide approaches to overcome named problems. Derived from the IEEE 11073 SDC standard terminology of medical device systems, we designed and validated a medical robotic device system (MERODES) to access and control a collaborative setup of two KUKA robots for ultrasound-guided needle insertions. The system is based on a novel standard for service-oriented device connectivity and utilizes collaborative principles to enhance user experience. Implementing separated workflow applications allows for a flexible system setup and configuration. The system was validated in three separate test scenarios to measure accuracies for 1) co-registration, 2) needle target planning in a water bath and 3) in an abdominal phantom. The co-registration accuracy averaged 0.94 ± 0.42 mm. The positioning errors ranged from 0.86 ± 0.42 to 1.19 ± 0.70 mm in the water bath setup and from 1.69 ± 0.92 to 1.96 ± 0.86 mm in the phantom. The presented results serve as a proof-of-concept and add to the current state of the art to alleviate system deployment and fast configuration for percutaneous robotic interventions

    Medical robots with potential applications in participatory and opportunistic remote sensing: A review

    Get PDF
    Among numerous applications of medical robotics, this paper concentrates on the design, optimal use and maintenance of the related technologies in the context of healthcare, rehabilitation and assistive robotics, and provides a comprehensive review of the latest advancements in the foregoing field of science and technology, while extensively dealing with the possible applications of participatory and opportunistic mobile sensing in the aforementioned domains. The main motivation for the latter choice is the variety of such applications in the settings having partial contributions to functionalities such as artery, radiosurgery, neurosurgery and vascular intervention. From a broad perspective, the aforementioned applications can be realized via various strategies and devices benefiting from detachable drives, intelligent robots, human-centric sensing and computing, miniature and micro-robots. Throughout the paper tens of subjects, including sensor-fusion, kinematic, dynamic and 3D tissue models are discussed based on the existing literature on the state-of-the-art technologies. In addition, from a managerial perspective, topics such as safety monitoring, security, privacy and evolutionary optimization of the operational efficiency are reviewed

    From Concept to Market: Surgical Robot Development

    Get PDF
    Surgical robotics and supporting technologies have really become a prime example of modern applied information technology infiltrating our everyday lives. The development of these systems spans across four decades, and only the last few years brought the market value and saw the rising customer base imagined already by the early developers. This chapter guides through the historical development of the most important systems, and provide references and lessons learnt for current engineers facing similar challenges. A special emphasis is put on system validation, assessment and clearance, as the most commonly cited barrier hindering the wider deployment of a system

    Nanorobotics in Medicine: A Systematic Review of Advances, Challenges, and Future Prospects

    Full text link
    Nanorobotics offers an emerging frontier in biomedicine, holding the potential to revolutionize diagnostic and therapeutic applications through its unique capabilities in manipulating biological systems at the nanoscale. Following PRISMA guidelines, a comprehensive literature search was conducted using IEEE Xplore and PubMed databases, resulting in the identification and analysis of a total of 414 papers. The studies were filtered to include only those that addressed both nanorobotics and direct medical applications. Our analysis traces the technology's evolution, highlighting its growing prominence in medicine as evidenced by the increasing number of publications over time. Applications ranged from targeted drug delivery and single-cell manipulation to minimally invasive surgery and biosensing. Despite the promise, limitations such as biocompatibility, precise control, and ethical concerns were also identified. This review aims to offer a thorough overview of the state of nanorobotics in medicine, drawing attention to current challenges and opportunities, and providing directions for future research in this rapidly advancing field

    Robotically Steered Needles: A Survey of Neurosurgical Applications and Technical Innovations

    Get PDF
    This paper surveys both the clinical applications and main technical innovations related to steered needles, with an emphasis on neurosurgery. Technical innovations generally center on curvilinear robots that can adopt a complex path that circumvents critical structures and eloquent brain tissue. These advances include several needle-steering approaches, which consist of tip-based, lengthwise, base motion-driven, and tissue-centered steering strategies. This paper also describes foundational mathematical models for steering, where potential fields, nonholonomic bicycle-like models, spring models, and stochastic approaches are cited. In addition, practical path planning systems are also addressed, where we cite uncertainty modeling in path planning, intraoperative soft tissue shift estimation through imaging scans acquired during the procedure, and simulation-based prediction. Neurosurgical scenarios tend to emphasize straight needles so far, and span deep-brain stimulation (DBS), stereoelectroencephalography (SEEG), intracerebral drug delivery (IDD), stereotactic brain biopsy (SBB), stereotactic needle aspiration for hematoma, cysts and abscesses, and brachytherapy as well as thermal ablation of brain tumors and seizure-generating regions. We emphasize therapeutic considerations and complications that have been documented in conjunction with these applications

    Identification of Hazards in Invasive/Surgical Robotics

    Get PDF
    Service robotics receives more and more attention in the developed world beside industrial applications. While industrial robotics conquered the factories, it was important that researches develop a number of principles and guidelines to help minimizing the risk of human accidents. Today’s safety standards of industrial robotics almost completely exclude the possibility of physical interaction between the human operator and the robotic device. Just recently, a new paradigm, the divided workspace has prevailed, and as a consequence, a number of new and critical safety issues have emerged. Service robots have become even more complicated, as we cannot erect a fence around domestic robots, and in the case of medical robotics, the human–machine interaction is inevitable. The goal of this research was to explore and quantify human–machine interactions, and classify them based on their hazard level. The focus is on surgical robotic devices and their current applications, as this situation presents one of the most complex form of interaction. It is necessary to make service robots complying with safety standards, based on a unified and generally accepted methodology

    Intraoperative Navigation Systems for Image-Guided Surgery

    Get PDF
    Recent technological advancements in medical imaging equipment have resulted in a dramatic improvement of image accuracy, now capable of providing useful information previously not available to clinicians. In the surgical context, intraoperative imaging provides a crucial value for the success of the operation. Many nontrivial scientific and technical problems need to be addressed in order to efficiently exploit the different information sources nowadays available in advanced operating rooms. In particular, it is necessary to provide: (i) accurate tracking of surgical instruments, (ii) real-time matching of images from different modalities, and (iii) reliable guidance toward the surgical target. Satisfying all of these requisites is needed to realize effective intraoperative navigation systems for image-guided surgery. Various solutions have been proposed and successfully tested in the field of image navigation systems in the last ten years; nevertheless several problems still arise in most of the applications regarding precision, usability and capabilities of the existing systems. Identifying and solving these issues represents an urgent scientific challenge. This thesis investigates the current state of the art in the field of intraoperative navigation systems, focusing in particular on the challenges related to efficient and effective usage of ultrasound imaging during surgery. The main contribution of this thesis to the state of the art are related to: Techniques for automatic motion compensation and therapy monitoring applied to a novel ultrasound-guided surgical robotic platform in the context of abdominal tumor thermoablation. Novel image-fusion based navigation systems for ultrasound-guided neurosurgery in the context of brain tumor resection, highlighting their applicability as off-line surgical training instruments. The proposed systems, which were designed and developed in the framework of two international research projects, have been tested in real or simulated surgical scenarios, showing promising results toward their application in clinical practice

    Recent advances in robot-assisted echography: Combining perception, control and cognition

    Get PDF
    Echography imaging is an important technique frequently used in medical diagnostics due to low-cost, non-ionising characteristics, and pragmatic convenience. Due to the shortage of skilful technicians and injuries of physicians sustained from diagnosing several patients, robot-assisted echography (RAE) system is gaining great attention in recent decades. A thorough study of the recent research advances in the field of perception, control and cognition techniques used in RAE systems is presented in this study. This survey introduces the representative system structure, applications and projects, and products. Challenges and key technological issues faced by the traditional RAE system and how the current artificial intelligence and cobots attempt to overcome these issues are summarised. Furthermore, significant future research directions in this field have been identified by this study as cognitive computing, operational skills transfer, and commercially feasible system design

    Deep Reinforcement Learning in Surgical Robotics: Enhancing the Automation Level

    Full text link
    Surgical robotics is a rapidly evolving field that is transforming the landscape of surgeries. Surgical robots have been shown to enhance precision, minimize invasiveness, and alleviate surgeon fatigue. One promising area of research in surgical robotics is the use of reinforcement learning to enhance the automation level. Reinforcement learning is a type of machine learning that involves training an agent to make decisions based on rewards and punishments. This literature review aims to comprehensively analyze existing research on reinforcement learning in surgical robotics. The review identified various applications of reinforcement learning in surgical robotics, including pre-operative, intra-body, and percutaneous procedures, listed the typical studies, and compared their methodologies and results. The findings show that reinforcement learning has great potential to improve the autonomy of surgical robots. Reinforcement learning can teach robots to perform complex surgical tasks, such as suturing and tissue manipulation. It can also improve the accuracy and precision of surgical robots, making them more effective at performing surgeries

    CO-ROBOTIC ULTRASOUND IMAGING: A COOPERATIVE FORCE CONTROL APPROACH

    Get PDF
    Ultrasound (US) imaging remains one of the most commonly used imaging modalities in medical practice due to its low cost and safety. However, 63-91% of ultrasonographers develop musculoskeletal disorders due to the effort required to perform imaging tasks. Robotic ultrasound (RUS), the application of robotic systems to assist ultrasonographers in ultrasound scanning procedures, has been proposed in literature and recently deployed in clinical settings using limited degree-of-freedom (DOF) systems. An example of this includes breast-scanning systems, which allow one-DOF translation of a large ultrasound array in order to capture patients’ breast scans and minimize sonographer effort while preserving a desired clinical outcome. Recently, the robotic industry has evolved to provide light-weight, compact, accurate, and cost-effective manipulators. We leverage this new reality in able to provide ultrasonographers with a full 6-DOF system that provides force assistance to facilitate US image acquisition. Admittance robot control allows for smooth human-machine interaction in a desired task. In the case of RUS, force control is capable of assisting sonographers in facilitating and even improving the imaging results of typical procedures. We propose a new system setup for collaborative force control in US applications. This setup consists of the 6-DOF UR5 industrial robot, and a 6-axes force sensor attached to the robot tooltip, which in turn has an US probe attached to it through a custom-designed probe attachment mechanism. Additionally, an independent one-axis load cell is placed inside this attachment device and used to measure the contact force between the probe and the patient’s anatomy in real time and independent of any other forces. As the sonographer guides the US probe, the robot collaborates with the hand motions, following the path of the user. When imaging, the robot can offer assistance to the sonographer by augmenting the forces applied by him or her, thereby lessening the physical effort required as well as the resulting strain. Additional benefits include force and velocity limiting for patient safety and robot motion constraints for particular imaging tasks. Initial results of a conducted user study show the feasibility of implementing the presented robot-assisted system in a clinical setting
    • 

    corecore