299 research outputs found

    WIMAX Basics from PHY Layer to Scheduling and Multicasting Approaches

    Get PDF
    WiMAX (Worldwide Interoperability for Microwave Access) is an emerging broadband wireless technology for providing Last mile solutions for supporting higher bandwidth and multiple service classes with various quality of service requirement. The unique architecture of the WiMAX MAC and PHY layers that uses OFDMA to allocate multiple channels with different modulation schema and multiple time slots for each channel allows better adaptation of heterogeneous user’s requirements. The main architecture in WiMAX uses PMP (Point to Multipoint), Mesh mode or the new MMR (Mobile Multi hop Mode) deployments where scheduling and multicasting have different approaches. In PMP SS (Subscriber Station) connects directly to BS (Base Station) in a single hop route so channel conditions adaptations and supporting QoS for classes of services is the key points in scheduling, admission control or multicasting, while in Mesh networks SS connects to other SS Stations or to the BS in a multi hop routes, the MMR mode extends the PMP mode in which the SS connects to either a relay station (RS) or to Bs. Both MMR and Mesh uses centralized or distributed scheduling with multicasting schemas based on scheduling trees for routing. In this paper a broad study is conducted About WiMAX technology PMP and Mesh deployments from main physical layers features with differentiation of MAC layer features to scheduling and multicasting approaches in both modes of operations

    QoS Scheduling in IEEE 802.16 Broadband Wireless Access Networks

    Get PDF
    With the exploding increase of mobile users and the release of new wireless applications, the high bandwidth requirement has been taking as a main concern for the design and development of the wireless techniques. There is no doubt that broadband wireless access with the support of heterogeneous kinds of applications is the trend in the next generation wireless networks. As a promising broadband wireless access standard, IEEE 802.16 has attracted extensive attentions from both industry and academia due to its high data rate and the inherent media access control (MAC) mechanism, which takes the service differentiation and quality of service (QoS) provisioning into account. To achieve service differentiation and QoS satisfaction for heterogenous applications is a very complicated issue. It refers to many fields, such as connection admission control (CAC), congestion control, routing algorithm, MAC protocol, and scheduling scheme. Among these fields, packet scheduling plays one of the most important roles in fulfilling service differentiation and QoS provisioning. It decides the order of packet transmissions, and provides mechanisms for the resource allocation and multiplexing at the packet level to ensure that different types of applications meet their service requirements and the network maintains a high resource utilization. In this thesis, we focus on the packet scheduling for difficult types of services in IEEE 802.16 networks, where unicast and mulitcast scheduling are investigated. For unicast scheduling, two types of services are considered: non-real-time polling service (nrtPS) and best effort (BE) service. We propose a flexible and efficient resource allocation and scheduling framework for nrtPS applications to achieve a tradeoff between the delivery delay and resource utilization, where automatic repeat request (ARQ) mechanisms and the adaptive modulation and coding (AMC) technique are jointly considered. For BE service, considering the heterogeneity of subscriber stations (SSs) in IEEE 802.16 networks, we propose the weighted proportional fairness scheduling scheme to achieve the flexible scheduling and resource allocation among SSs based on their traffic demands/patterns. For multicast scheduling, a cooperative multicast scheduling is proposed to achieve high throughput and reliable transmission. By using the two-phase transmission model to exploit the spatial diversity gain in the multicast scenario, the proposed scheduling scheme can significantly improve the throughput not only for all multicast groups, but also for each group member. Analytical models are developed to investigate the performance of the proposed schemes in terms of some important performance measurements, such as throughput, resource utilization, and service probability. Extensive simulations are conducted to illustrate the efficient of the proposed schemes and the accuracy of the analytical models. The research work should provide meaningful guidelines for the system design and the selection of operational parameters, such as the number of TV channels supported by the network, the achieved video quality of each SS in the network, and the setting of weights for SSs under different BE traffic demands

    Wireless broadband access: WiMAX and beyond - Investigation of bandwidth request mechanisms under point-to-multipoint mode of WiMAX networks

    Get PDF
    The WiMAX standard specifies a metropolitan area broadband wireless access air interface. In order to support QoS for multimedia applications, various bandwidth request and scheduling mechanisms are suggested in WiMAX, in which a subscriber station can send request messages to a base station, and the base station can grant or reject the request according to the available radio resources. This article first compares two fundamental bandwidth request mechanisms specified in the standard, random access vs. polling under the point-to-multipoint mode, a mandatory transmission mode. Our results demonstrate that random access outperforms polling when the request rate is low. However, its performance degrades significantly when the channel is congested. Adaptive switching between random access and polling according to load can improve system performance. We also investigate the impact of channel noise on the random access request mechanism

    Hybrid Strategies for Link Adaptation Exploiting Several Degrees of Freedom in WiMAX Systems

    Get PDF

    An Enhanced Feedback-Base Downlink Packet Scheduling Algorithm for Mobile TV in WIMAX Networks

    Get PDF
    With high speed access network technology like WIMAX, there is the need for efficient management of radio resources where the throughput and Qos requirements for Multicasting Broadcasting Services (MBS) for example TV are to be met. An enhanced feedback-base downlink Packet scheduling algorithm that can be used in IEEE 802.16d/e networks for mobile TV “one way traffic”(MBS) is needed to support many users utilizing multiuser diversity of the broadband of WIMAX systems where a group of users(good/worst channels) share allocated resources (bandwidth). This paper proposes a WIMAX framework feedback-base (like a channel-awareness) downlink packet scheduling algorithm for Mobile TV traffics in IEEE806.16, in which network Physical Timing Slots (PSs) resource blocks are allocated in a dynamic way to mobile TV subscribers based on the Channel State information (CSI) feedback, and then considering users with worst channels with the aim of improving system throughput while system coverage is being guaranteed. The algorithm was examined by changing the PSs bandwidth allocation of the users and different number of users of a cell. Simulation results show our proposed algorithm performed better than other algorithms (blind algorithms) in terms of improvement in system throughput performance. Doi: 10.12777/ijse.5.1.55-62 [How to cite this article: Oyewale, J. and , Juan, L.X.. (2013). An Enhanced Feedback-Base Downlink Packet Scheduling Algorithm for Mobile TV in WIMAX Networks. International Journal of Science and Engineering, 5(1),55-62. Doi: 10.12777/ijse.5.1.55-62

    Smart PIN: performance and cost-oriented context-aware personal information network

    Get PDF
    The next generation of networks will involve interconnection of heterogeneous individual networks such as WPAN, WLAN, WMAN and Cellular network, adopting the IP as common infrastructural protocol and providing virtually always-connected network. Furthermore, there are many devices which enable easy acquisition and storage of information as pictures, movies, emails, etc. Therefore, the information overload and divergent content’s characteristics make it difficult for users to handle their data in manual way. Consequently, there is a need for personalised automatic services which would enable data exchange across heterogeneous network and devices. To support these personalised services, user centric approaches for data delivery across the heterogeneous network are also required. In this context, this thesis proposes Smart PIN - a novel performance and cost-oriented context-aware Personal Information Network. Smart PIN's architecture is detailed including its network, service and management components. Within the service component, two novel schemes for efficient delivery of context and content data are proposed: Multimedia Data Replication Scheme (MDRS) and Quality-oriented Algorithm for Multiple-source Multimedia Delivery (QAMMD). MDRS supports efficient data accessibility among distributed devices using data replication which is based on a utility function and a minimum data set. QAMMD employs a buffer underflow avoidance scheme for streaming, which achieves high multimedia quality without content adaptation to network conditions. Simulation models for MDRS and QAMMD were built which are based on various heterogeneous network scenarios. Additionally a multiple-source streaming based on QAMMS was implemented as a prototype and tested in an emulated network environment. Comparative tests show that MDRS and QAMMD perform significantly better than other approaches

    Virtualization of multicast services in WiMAX networks

    Get PDF
    Multicast service is one of the methods used to efficiently manage bandwidth when sending multimedia content. To improve bandwidth utilisation, virtualization is often invoked because of its additional features such as bandwidth sharing and support of services that require high volumes of transactional data. Currently, network providers are concerned with the bandwidth amount for efficient use of the limited wireless network capabilities and the provision of a better quality of service. The virtualization design of a multicast service framework should satisfy several objectives. For example, it should enable the interchange of service delivery between multiple networks with one shareable network infrastructure. Also, it should ensure efficient use of network resources and guarantee users' demands of Quality of Service (QoS). Thus, the design of virtualization of multicast service framework is a complex research study. Due to the bandwidth-related arguments, a strong focus has been put on technical issues that facilitate virtualization in wireless networks. A well-designed virtualized network guarantees users with the required quality service. Similarly, virtualization of multicast service is invoked to improve efficient utilisation of bandwidth in wireless networks. As wireless links prove to be unstable, packet loss is unavoidable when multicast service-oriented virtual artefacts are incorporated in wireless networks. In this thesis, a virtualized multicast framework was modelled by using Generalized Assignment Problem (GAP) methodology. Mixed Integer Linear Programing (MILP) was implemented in MATLAB to solve the GAP model. This was to optimise the allocation of multicast traffic to the appropriate virtual networks. Thus, the developed model allows users to have interchangeable services offered by multiple networks. Furthermore, Network Simulator version 3 (NS-3) was used to evaluate the performance of the virtualized multicast framework. Three applications, namely, voice over IP (VoIP), video streaming, and file download have been used to evaluate the performance of a multicast service virtualization framework in Worldwide Interoperability for Microwave Access (WiMAX) networks using NS-3. The performance evaluation was based on whether MILP is used or not used. The results of experimentation have revealed that there is good performance of virtual networks when multicast traffic is sent over one single virtual network instead of sending it over multiple virtual networks. Similarly, the results show that the bandwidth is efficiently used because the multicast traffic is not delivered through multiple virtual networks. Overall, the concepts, the investigations and the model presented in this thesis can enable mobile network providers to achieve efficient use of bandwidth and provide the necessary means to support services for QoS differentiations and guarantees. Also, the multicast service virtualization framework provides an excellent tool that can enable network providers to interchange services. The developed model can serve as a basis for further extension. Specifically, the extension of the model can boost load balancing in the flow allocation problem and activate a virtual network to deliver traffic. This may rely on the QoS policy between network providers. Therefore, the model should consider the number of users in order to guarantee improved QoS
    corecore