1,367 research outputs found

    Bio-inspired enhancement of reputation systems for intelligent environments

    Get PDF
    Providing security to the emerging field of ambient intelligence will be difficult if we rely only on existing techniques, given their dynamic and heterogeneous nature. Moreover, security demands of these systems are expected to grow, as many applications will require accurate context modeling. In this work we propose an enhancement to the reputation systems traditionally deployed for securing these systems. Different anomaly detectors are combined using the immunological paradigm to optimize reputation system performance in response to evolving security requirements. As an example, the experiments show how a combination of detectors based on unsupervised techniques (self-organizing maps and genetic algorithms) can help to significantly reduce the global response time of the reputation system. The proposed solution offers many benefits: scalability, fast response to adversarial activities, ability to detect unknown attacks, high adaptability, and high ability in detecting and confining attacks. For these reasons, we believe that our solution is capable of coping with the dynamism of ambient intelligence systems and the growing requirements of security demands

    Discrete R-Contiguous bit Matching mechanism appropriateness for anomaly detection in Wireless Sensor Networks

    Get PDF
    Resource exhaustion is one of the main challenges for the security of Wireless Sensor Networks (WSNs). The challenge can be addressed by using algorithms that are light weighted. In this paper use of light-weighted R-Contiguous Bit matching for attack detection in WSNs has been evaluated. Use of R-Contiguous bit matching in Negative Selection Algorithm (NSA) has improved the performance of anomaly detection resulting in low false positive, false negative and high detection rates. The proposed model has been tested against some of the attacks. The high detection rate has proved the appropriateness of R-Contiguous bit matching mechanism for anomaly detection in WSNs

    Vulnerability analysis of AIS-based intrusion detection systems using genetic and evolutionary hackers

    Get PDF
    In this thesis, an overview of current intrusion detection methods, evolutionary computation, and immunity-based intrusion detection systems (IDSs) is presented. An application named Genetic Interactive Teams for Intrusion Detection Design and Analysis (GENERTIA) is introduced which uses genetic algorithm (GA)-based hackers known as a red team in order to find vulnerabilities, or holes, in an artificial immune system (AlS)-based IDS. GENERTIA also uses a GA-based blue team in order to repair the holes it finds. The performance of the GA-based hackers is tested and measured according to the number of distinct holes that it finds. The GA-based red team�s behavior is then compared to that of 12 variations of the particle swarm optimization (PSO)-based red team named SWO, SW0+, SW1, SW2, SW3, SW4, CCSWO, CCSW0+, CCSW1, CCSW2, CCSW3, and CCSW4. Each variant of the PSO-based red team differs in terms of the way that it searches for holes in an IDS. Through this test, it is determined that none of the red teams based on PSO perform as well as the one based on a GA. However, two of the twelve PSO-based red teams, CCSW4 and SW0+, provide hole finding capabilities closest to that of the GA. In addition to the ability of the different red teams to find holes in an AlS-based IDS, the search behaviors of the GA-based hackers, PSO-based hackers that use a variable called a constriction coefficient, and PSO-based hackers that do not use the coefficient are compared. The results of this comparison show that it may be possible to implement a red team based on a hybrid �genetic swarm� that improves upon the performance of both the GA- and PSO-based red teams

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    BIOLOGICAL INSPIRED INTRUSION PREVENTION AND SELF-HEALING SYSTEM FOR CRITICAL SERVICES NETWORK

    Get PDF
    With the explosive development of the critical services network systems and Internet, the need for networks security systems have become even critical with the enlargement of information technology in everyday life. Intrusion Prevention System (IPS) provides an in-line mechanism focus on identifying and blocking malicious network activity in real time. This thesis presents new intrusion prevention and self-healing system (SH) for critical services network security. The design features of the proposed system are inspired by the human immune system, integrated with pattern recognition nonlinear classification algorithm and machine learning. Firstly, the current intrusions preventions systems, biological innate and adaptive immune systems, autonomic computing and self-healing mechanisms are studied and analyzed. The importance of intrusion prevention system recommends that artificial immune systems (AIS) should incorporate abstraction models from innate, adaptive immune system, pattern recognition, machine learning and self-healing mechanisms to present autonomous IPS system with fast and high accurate detection and prevention performance and survivability for critical services network system. Secondly, specification language, system design, mathematical and computational models for IPS and SH system are established, which are based upon nonlinear classification, prevention predictability trust, analysis, self-adaptation and self-healing algorithms. Finally, the validation of the system carried out by simulation tests, measuring, benchmarking and comparative studies. New benchmarking metrics for detection capabilities, prevention predictability trust and self-healing reliability are introduced as contributions for the IPS and SH system measuring and validation. Using the software system, design theories, AIS features, new nonlinear classification algorithm, and self-healing system show how the use of presented systems can ensure safety for critical services networks and heal the damage caused by intrusion. This autonomous system improves the performance of the current intrusion prevention system and carries on system continuity by using self-healing mechanism
    corecore