111 research outputs found

    A cooperative game for automated learning of elasto-plasticity knowledge graphs and models with AI-guided experimentation

    Get PDF
    We introduce a multi-agent meta-modeling game to generate data, knowledge, and models that make predictions on constitutive responses of elasto-plastic materials. We introduce a new concept from graph theory where a modeler agent is tasked with evaluating all the modeling options recast as a directed multigraph and find the optimal path that links the source of the directed graph (e.g. strain history) to the target (e.g. stress) measured by an objective function. Meanwhile, the data agent, which is tasked with generating data from real or virtual experiments (e.g. molecular dynamics, discrete element simulations), interacts with the modeling agent sequentially and uses reinforcement learning to design new experiments to optimize the prediction capacity. Consequently, this treatment enables us to emulate an idealized scientific collaboration as selections of the optimal choices in a decision tree search done automatically via deep reinforcement learning

    Deep Learning Predicts Stress–Strain Relations of Granular Materials Based on Triaxial Testing Data

    Get PDF
    This study presents an AI-based constitutive modelling framework wherein the prediction model directly learns from triaxial testing data by combining discrete element modelling (DEM) and deep learning. A constitutive learning strategy is proposed based on the generally accepted frame-indifference assumption in constructing material constitutive models. The low-dimensional principal stress-strain sequence pairs, measured from discrete element modelling of triaxial testing, are used to train recurrent neural networks, and then the predicted principal stress sequence is augmented to other high-dimensional or general stress tensor via coordinate transformation. Through detailed hyperparameter investigations, it is found that long short-term memory (LSTM) and gated recurrent unit (GRU) networks have similar prediction performance in constitutive modelling problems, and both satisfactorily predict the stress responses of granular materials subjected to a given unseen strain path. Furthermore, the unique merits and ongoing challenges of data-driven constitutive models for granular materials are discussed

    SO(3)-invariance of informed-graph-based deep neural network for anisotropic elastoplastic materials

    Get PDF
    This paper examines the frame-invariance (and the lack thereof) exhibited in simulated anisotropic elasto-plastic responses generated from supervised machine learning of classical multi-layer and informed-graph-based neural networks, and proposes different remedies to fix this drawback. The inherent hierarchical relations among physical quantities and state variables in an elasto-plasticity model are first represented as informed, directed graphs, where three variations of the graph are tested. While feed-forward neural networks are used to train path-independent constitutive relations (e.g., elasticity), recurrent neural networks are used to replicate responses that depends on the deformation history, i.e. or path dependent. In dealing with the objectivity deficiency, we use the spectral form to represent tensors and, subsequently, three metrics, the Euclidean distance between the Euler Angles, the distance from the identity matrix, and geodesic on the unit sphere in Lie algebra, can be employed to constitute objective functions for the supervised machine learning. In this, the aim is to minimize the measured distance between the true and the predicted 3D rotation entities. Following this, we conduct numerical experiments on how these metrics, which are theoretically equivalent, may lead to differences in the efficiency of the supervised machine learning as well as the accuracy and robustness of the resultant models. Neural network models trained with tensors represented in component form for a given Cartesian coordinate system are used as a benchmark. Our numerical tests show that, even given the same amount of information and data, the quality of the anisotropic elasto-plasticity model is highly sensitive to the way tensors are represented and measured. The results reveal that using a loss function based on geodesic on the unit sphere in Lie algebra together with an informed, directed graph yield significantly more accurate rotation prediction than the other tested approaches

    Stress representations for tensor basis neural networks: alternative formulations to Finger-Rivlin-Ericksen

    Full text link
    Data-driven constitutive modeling frameworks based on neural networks and classical representation theorems have recently gained considerable attention due to their ability to easily incorporate constitutive constraints and their excellent generalization performance. In these models, the stress prediction follows from a linear combination of invariant-dependent coefficient functions and known tensor basis generators. However, thus far the formulations have been limited to stress representations based on the classical Rivlin and Ericksen form, while the performance of alternative representations has yet to be investigated. In this work, we survey a variety of tensor basis neural network models for modeling hyperelastic materials in a finite deformation context, including a number of so far unexplored formulations which use theoretically equivalent invariants and generators to Finger-Rivlin-Ericksen. Furthermore, we compare potential-based and coefficient-based approaches, as well as different calibration techniques. Nine variants are tested against both noisy and noiseless datasets for three different materials. Theoretical and practical insights into the performance of each formulation are given.Comment: 32 pages, 20 figures, 4 appendice

    Recent Advances and Applications of Machine Learning in Metal Forming Processes

    Get PDF
    Machine learning (ML) technologies are emerging in Mechanical Engineering, driven by the increasing availability of datasets, coupled with the exponential growth in computer performance. In fact, there has been a growing interest in evaluating the capabilities of ML algorithms to approach topics related to metal forming processes, such as: Classification, detection and prediction of forming defects; Material parameters identification; Material modelling; Process classification and selection; Process design and optimization. The purpose of this Special Issue is to disseminate state-of-the-art ML applications in metal forming processes, covering 10 papers about the abovementioned and related topics
    • …
    corecore