11,626 research outputs found

    Cooperative Communications inWireless Local Area Networks: MAC Protocol Design and Multi-layer Solutions

    Get PDF
    This dissertation addresses cooperative communications and proposes multi-layer solu- tions for wireless local area networks, focusing on cooperative MAC design. The coop- erative MAC design starts from CSMA/CA based wireless networks. Three key issues of cooperation from the MAC layer are dealt with: i.e., when to cooperate (opportunistic cooperation), whom to cooperate with (relay selection), and how to protect cooperative transmissions (message procedure design). In addition, a cooperative MAC protocol that addresses these three issues is proposed. The relay selection scheme is further optimized in a clustered network to solve the problem of high collision probability in a dense network. The performance of the proposed schemes is evaluated in terms of through- put, packet delivery rate and energy efficiency. Furthermore, the proposed protocol is verified through formal model checking using SPIN. Moreover, a cooperative code allo- cation scheme is proposed targeting at a clustered network where multiple relay nodes can transmit simultaneously. The cooperative communication design is then extended to the routing layer through cross layer routing metrics. Another part of the work aims at enabling concurrent transmissions using cooperative carrier sensing to improve the per- formance in a WLAN network with multiple access points sharing the same channel

    Cooperative communication in wireless local area networks

    Get PDF
    The concept of cooperative communication has been proposed to improve link capacity, transmission reliability and network coverage in multiuser wireless communication networks. Different from conventional point-to-point and point-to-multipoint communications, cooperative communication allows multiple users or stations in a wireless network to coordinate their packet transmissions and share each other’s resources, thus achieving high performance gain and better service coverage. According to the IEEE 802.11 standards, Wireless Local Area Networks (WLANs) can support multiple transmission data rates, depending on the instantaneous channel condition between a source station and an Access Point (AP). In such a multi-rate WLAN, those low data-rate stations will occupy the shared communication channel for a longer period for transmitting a fixed-size packet to the AP, thus reducing the channel efficiency and overall system performance. This thesis addresses this challenging problem in multi-rate WLANs by proposing two cooperative Medium Access Control (MAC) protocols, namely Busy Tone based Cooperative MAC (BTAC) protocol and Cooperative Access with Relay’s Data (CARD) protocol. Under BTAC, a low data-rate sending station tries to identify and use a close-by intermediate station as its relay to forward its data packets at higher data-rate to the AP through a two-hop path. In this way, BTAC can achieve cooperative diversity gain in multi-rate WLANs. Furthermore, the proposed CARD protocol enables a relay station to transmit its own data packets to the AP immediately after forwarding its neighbour’s packets, thus minimising the handshake procedure and overheads for sensing and reserving the common channel. In doing so, CARD can achieve both cooperative diversity gain and cooperative multiplexing gain. Both BTAC and CARD protocols are backward compatible with the existing IEEE 802.11 standards. New cross-layer mathematical models have been developed in this thesis to study the performance of BTAC and CARD under different channel conditions and for saturated and unsaturated traffic loads. Detailed simulation platforms were developed and are discussed in this thesis. Extensive simulation results validate the mathematical models developed and show that BTAC and CARD protocols can significantly improve system throughput, service delay, and energy efficiency for WLANs operating under realistic communication scenarios

    A Cross-Layer Design Based on Geographic Information for Cooperative Wireless Networks

    Full text link
    Most of geographic routing approaches in wireless ad hoc and sensor networks do not take into consideration the medium access control (MAC) and physical layers when designing a routing protocol. In this paper, we focus on a cross-layer framework design that exploits the synergies between network, MAC, and physical layers. In the proposed CoopGeo, we use a beaconless forwarding scheme where the next hop is selected through a contention process based on the geographic position of nodes. We optimize this Network-MAC layer interaction using a cooperative relaying technique with a relay selection scheme also based on geographic information in order to improve the system performance in terms of reliability.Comment: in 2010 IEEE 71st Vehicular Technology Conference, 201

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201
    corecore