625 research outputs found

    What's the Situation with Intelligent Mesh Generation: A Survey and Perspectives

    Full text link
    Intelligent Mesh Generation (IMG) represents a novel and promising field of research, utilizing machine learning techniques to generate meshes. Despite its relative infancy, IMG has significantly broadened the adaptability and practicality of mesh generation techniques, delivering numerous breakthroughs and unveiling potential future pathways. However, a noticeable void exists in the contemporary literature concerning comprehensive surveys of IMG methods. This paper endeavors to fill this gap by providing a systematic and thorough survey of the current IMG landscape. With a focus on 113 preliminary IMG methods, we undertake a meticulous analysis from various angles, encompassing core algorithm techniques and their application scope, agent learning objectives, data types, targeted challenges, as well as advantages and limitations. We have curated and categorized the literature, proposing three unique taxonomies based on key techniques, output mesh unit elements, and relevant input data types. This paper also underscores several promising future research directions and challenges in IMG. To augment reader accessibility, a dedicated IMG project page is available at \url{https://github.com/xzb030/IMG_Survey}

    Perceptual Quality Evaluation of 3D Triangle Mesh: A Technical Review

    Full text link
    © 2018 IEEE. During mesh processing operations (e.g. simplifications, compression, and watermarking), a 3D triangle mesh is subject to various visible distortions on mesh surface which result in a need to estimate visual quality. The necessity of perceptual quality evaluation is already established, as in most cases, human beings are the end users of 3D meshes. To measure such kinds of distortions, the metrics that consider geometric measures integrating human visual system (HVS) is called perceptual quality metrics. In this paper, we direct an expansive study on 3D mesh quality evaluation mostly focusing on recently proposed perceptual based metrics. We limit our study on greyscale static mesh evaluation and attempt to figure out the most workable method for real-Time evaluation by making a quantitative comparison. This paper also discusses in detail how to evaluate objective metric's performance with existing subjective databases. In this work, we likewise research the utilization of the psychometric function to expel non-linearity between subjective and objective values. Finally, we draw a comparison among some selected quality metrics and it shows that curvature tensor based quality metrics predicts consistent result in terms of correlation

    Depth from Monocular Images using a Semi-Parallel Deep Neural Network (SPDNN) Hybrid Architecture

    Get PDF
    Deep neural networks are applied to a wide range of problems in recent years. In this work, Convolutional Neural Network (CNN) is applied to the problem of determining the depth from a single camera image (monocular depth). Eight different networks are designed to perform depth estimation, each of them suitable for a feature level. Networks with different pooling sizes determine different feature levels. After designing a set of networks, these models may be combined into a single network topology using graph optimization techniques. This "Semi Parallel Deep Neural Network (SPDNN)" eliminates duplicated common network layers, and can be further optimized by retraining to achieve an improved model compared to the individual topologies. In this study, four SPDNN models are trained and have been evaluated at 2 stages on the KITTI dataset. The ground truth images in the first part of the experiment are provided by the benchmark, and for the second part, the ground truth images are the depth map results from applying a state-of-the-art stereo matching method. The results of this evaluation demonstrate that using post-processing techniques to refine the target of the network increases the accuracy of depth estimation on individual mono images. The second evaluation shows that using segmentation data alongside the original data as the input can improve the depth estimation results to a point where performance is comparable with stereo depth estimation. The computational time is also discussed in this study.Comment: 44 pages, 25 figure
    • …
    corecore