1,911 research outputs found

    New optimization techniques for point feature and general curve feature based SLAM

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.This doctoral thesis deals with the feature based Simultaneous Localization and Mapping (SLAM) problem. SLAM as defined in this thesis is the process of concurrently building up a map of the environment and using this map to obtain improved estimates of the location of the robot. In feature based SLAM, the robot relies on its ability to extract useful navigation information from the data returned by its sensors. The robot typically starts at an unknown location without priori knowledge of feature locations. From relative observations of features and relative pose measurements, estimates of entire robot trajectory and feature locations can be derived. Thus, the solution to SLAM problem enables an autonomous vehicle navigates in a unknown environment autonomously. The advantage of eliminating the need for artificial infrastructures or a priori topological knowledge of the environment makes SLAM problem one of the hot research topics in the robotics literature. Solution to the SLAM problem would be of inestimable value in a range of applications such as exploration, surveillance, transportation, mining etc. The critical problems for feature based SLAM implementations are as follows: 1) Because SLAM problems are high dimensional, nonlinear and non-convex, when solving SLAM problems, robust optimization techniques are required. 2) When the environment is complex and unstructured, appropriate parametrization method is required to represent environments with minimum information loss. 3) As robot navigates in the environment, the information acquired by the onboard sensor increases. It is essential to develop computationally tractable SLAM algorithms especially for general curve features. This thesis presents the following contributions to feature based SLAM. First, a convex optimization based approach for point feature SLAM problems is developed. Using the proposed method, a unique solution can be obtained without any initial state estimates. It will be shown that, the unique SDP solution obtained from the proposed method is very close to the true solution to the SLAM problem. Second, a general curve feature based SLAM formulation is presented. Instead of scattered points, in this formulation, the environment is represented by a number of continuous curves. Using the new formulation, all the available information from the sensor is utilized in the optimization process. Third, method for converting curve feature to point feature is presented. Using the conversion method, the curve feature SLAM problem can be transferred to point feature SLAM problem and can be solved by the convex optimization based approach

    Modeling Perceptual Aliasing in SLAM via Discrete-Continuous Graphical Models

    Full text link
    Perceptual aliasing is one of the main causes of failure for Simultaneous Localization and Mapping (SLAM) systems operating in the wild. Perceptual aliasing is the phenomenon where different places generate a similar visual (or, in general, perceptual) footprint. This causes spurious measurements to be fed to the SLAM estimator, which typically results in incorrect localization and mapping results. The problem is exacerbated by the fact that those outliers are highly correlated, in the sense that perceptual aliasing creates a large number of mutually-consistent outliers. Another issue stems from the fact that most state-of-the-art techniques rely on a given trajectory guess (e.g., from odometry) to discern between inliers and outliers and this makes the resulting pipeline brittle, since the accumulation of error may result in incorrect choices and recovery from failures is far from trivial. This work provides a unified framework to model perceptual aliasing in SLAM and provides practical algorithms that can cope with outliers without relying on any initial guess. We present two main contributions. The first is a Discrete-Continuous Graphical Model (DC-GM) for SLAM: the continuous portion of the DC-GM captures the standard SLAM problem, while the discrete portion describes the selection of the outliers and models their correlation. The second contribution is a semidefinite relaxation to perform inference in the DC-GM that returns estimates with provable sub-optimality guarantees. Experimental results on standard benchmarking datasets show that the proposed technique compares favorably with state-of-the-art methods while not relying on an initial guess for optimization.Comment: 13 pages, 14 figures, 1 tabl

    GSLAM: Initialization-robust Monocular Visual SLAM via Global Structure-from-Motion

    Full text link
    Many monocular visual SLAM algorithms are derived from incremental structure-from-motion (SfM) methods. This work proposes a novel monocular SLAM method which integrates recent advances made in global SfM. In particular, we present two main contributions to visual SLAM. First, we solve the visual odometry problem by a novel rank-1 matrix factorization technique which is more robust to the errors in map initialization. Second, we adopt a recent global SfM method for the pose-graph optimization, which leads to a multi-stage linear formulation and enables L1 optimization for better robustness to false loops. The combination of these two approaches generates more robust reconstruction and is significantly faster (4X) than recent state-of-the-art SLAM systems. We also present a new dataset recorded with ground truth camera motion in a Vicon motion capture room, and compare our method to prior systems on it and established benchmark datasets.Comment: 3DV 2017 Project Page: https://frobelbest.github.io/gsla

    Lagrangian Duality in 3D SLAM: Verification Techniques and Optimal Solutions

    Get PDF
    State-of-the-art techniques for simultaneous localization and mapping (SLAM) employ iterative nonlinear optimization methods to compute an estimate for robot poses. While these techniques often work well in practice, they do not provide guarantees on the quality of the estimate. This paper shows that Lagrangian duality is a powerful tool to assess the quality of a given candidate solution. Our contribution is threefold. First, we discuss a revised formulation of the SLAM inference problem. We show that this formulation is probabilistically grounded and has the advantage of leading to an optimization problem with quadratic objective. The second contribution is the derivation of the corresponding Lagrangian dual problem. The SLAM dual problem is a (convex) semidefinite program, which can be solved reliably and globally by off-the-shelf solvers. The third contribution is to discuss the relation between the original SLAM problem and its dual. We show that from the dual problem, one can evaluate the quality (i.e., the suboptimality gap) of a candidate SLAM solution, and ultimately provide a certificate of optimality. Moreover, when the duality gap is zero, one can compute a guaranteed optimal SLAM solution from the dual problem, circumventing non-convex optimization. We present extensive (real and simulated) experiments supporting our claims and discuss practical relevance and open problems.Comment: 10 pages, 4 figure

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Learning to Navigate the Energy Landscape

    Full text link
    In this paper, we present a novel and efficient architecture for addressing computer vision problems that use `Analysis by Synthesis'. Analysis by synthesis involves the minimization of the reconstruction error which is typically a non-convex function of the latent target variables. State-of-the-art methods adopt a hybrid scheme where discriminatively trained predictors like Random Forests or Convolutional Neural Networks are used to initialize local search algorithms. While these methods have been shown to produce promising results, they often get stuck in local optima. Our method goes beyond the conventional hybrid architecture by not only proposing multiple accurate initial solutions but by also defining a navigational structure over the solution space that can be used for extremely efficient gradient-free local search. We demonstrate the efficacy of our approach on the challenging problem of RGB Camera Relocalization. To make the RGB camera relocalization problem particularly challenging, we introduce a new dataset of 3D environments which are significantly larger than those found in other publicly-available datasets. Our experiments reveal that the proposed method is able to achieve state-of-the-art camera relocalization results. We also demonstrate the generalizability of our approach on Hand Pose Estimation and Image Retrieval tasks
    • …
    corecore