2,723 research outputs found

    A conversational intelligent tutoring system to automatically predict learning styles

    Get PDF
    This paper proposes a generic methodology and architecture for developing a novel conversational intelligent tutoring system (CITS) called Oscar that leads a tutoring conversation and dynamically predicts and adapts to a student’s learning style. Oscar aims to mimic a human tutor by implicitly modelling the learning style during tutoring, and personalising the tutorial to boost confidence and improve the effectiveness of the learning experience. Learners can intuitively explore and discuss topics in natural language, helping to establish a deeper understanding of the topic. The Oscar CITS methodology and architecture are independent of the learning styles model and tutoring subject domain. Oscar CITS was implemented using the Index of Learning Styles (ILS) model (Felder & Silverman, 1988) to deliver an SQL tutorial. Empirical studies involving real students have validated the prediction of learning styles in a real-world teaching/learning environment. The results showed that all learning styles in the ILS model were successfully predicted from a natural language tutoring conversation, with an accuracy of 61–100%. Participants also found Oscar’s tutoring helpful and achieved an average learning gain of 13%

    Personalising Learning with Dynamic Prediction and Adaptation to Learning Styles in a Conversational Intelligent Tutoring System

    Get PDF
    This thesis presents research that combines the benefits of intelligent tutoring systems (ITS), conversational agents (CA) and learning styles theory by constructing a novel conversational intelligent tutoring system (CITS) called Oscar. Oscar CITS aims to imitate a human tutor by implicitly predicting individuals’ learning style preferences and adapting its tutoring style to suit them during a tutoring conversation. ITS are computerised learning systems that intelligently personalise tutoring based on learner characteristics such as existing knowledge and learning style. ITS are traditionally student-led, hyperlink-based learning systems that adapt the presentation of learning resources by reordering or hiding links. Research suggests that students learn more effectively when instruction matches their learning style, which is typically modelled explicitly using questionnaires or implicitly based on behaviour. Learning is a social process and natural language interfaces to ITS, such as CAs, allow students to construct knowledge through discussion. Existing CITS adapt tutoring according to student knowledge, emotions and mood, however no CITS adapts to learning styles. Oscar CITS models a human tutor by directing a tutoring conversation and automatically detecting and adapting to an individual’s learning styles. Original methodologies and architectures were developed for constructing an Oscar Predictive CITS and an Oscar Adaptive CITS. Oscar Predictive CITS uses knowledge captured from a learning styles model to dynamically predict learning styles from an individual’s tutoring dialogue. Oscar Adaptive CITS applies a novel adaptation algorithm to select the best tutoring style for each tutorial question. The Oscar CITS methodologies and architectures are independent of the learning styles model and subject domain. Empirical studies involving real students have validated the prediction and adaptation of learning styles in a real-world teaching/learning environment. The results show that learning styles can be successfully predicted from a natural language tutoring dialogue, and that adapting the tutoring style significantly improves learning performance

    On Predicting Learning Styles in Conversational Intelligent Tutoring Systems using Fuzzy Decision Trees

    Get PDF
    Intelligent Tutoring Systems personalise learning for students with different backgrounds, abilities, behaviours and knowledge. One way to personalise learning is through consideration of individual differences in preferred learning style. OSCAR is the name of a Conversational Intelligent Tutoring System that models a person's learning style using natural language dialogue during tutoring in order to dynamically predict, and personalise, their tutoring session. Prediction of learning style is undertaken by capturing independent behaviour variables during the tutoring conversation with the highest value variable determining the student's learning style. A weakness of this approach is that it does not take into consideration the interactions between behaviour variables and, due to the uncertainty inherently present in modelling learning styles, small differences in behaviour can lead to incorrect predictions. Consequently, the learner is presented with tutoring material not suited to their learning style. This paper proposes a new method that uses fuzzy decision trees to build a series of fuzzy predictive models combining these variables for all dimensions of the Felder Silverman Learning Styles model. Results using live data show the fuzzy models have increased the predictive accuracy of OSCAR-CITS across four learning style dimensions and facilitated the discovery of some interesting relationships amongst behaviour variables

    Towards the Use of Dialog Systems to Facilitate Inclusive Education

    Get PDF
    Continuous advances in the development of information technologies have currently led to the possibility of accessing learning contents from anywhere, at anytime, and almost instantaneously. However, accessibility is not always the main objective in the design of educative applications, specifically to facilitate their adoption by disabled people. Different technologies have recently emerged to foster the accessibility of computers and new mobile devices, favoring a more natural communication between the student and the developed educative systems. This chapter describes innovative uses of multimodal dialog systems in education, with special emphasis in the advantages that they provide for creating inclusive applications and learning activities

    Adaptive tutoring in an intelligent conversational agent system

    Get PDF
    This paper describes an adaptive online conversational intelligent tu-toring system (CITS) called Oscar that delivers a personalised natural language tutorial. During the tutoring conversation, Oscar CITS dynamically predicts and adapts to a student’s learning style. Oscar CITS aims to mimic a human tutor by using knowledge of learning styles to adapt its tutoring style and improve the effectiveness of the learning experience. Learners can intuitively explore and discuss topics in natural language, helping to establish a deeper understanding of the topic and boost confidence. An initial study into the adaptation to learn-ing styles is reported which produced encouraging results and positive test score improvements. The results show that students experiencing a tutorial adapted to suit their learning styles performed significantly better than those experiencing an unsuited tutorial

    An adaptation algorithm for an intelligent natural language tutoring system

    Get PDF
    The focus of computerised learning has shifted from content delivery towards personalised online learning with Intelligent Tutoring Systems (ITS). Oscar Conversational ITS (CITS) is a sophisticated ITS that uses a natural language interface to enable learners to construct their own knowledge through discussion. Oscar CITS aims to mimic a human tutor by dynamically detecting and adapting to an individual's learning styles whilst directing the conversational tutorial. Oscar CITS is currently live and being successfully used to support learning by university students. The major contribution of this paper is the development of the novel Oscar CITS adaptation algorithm and its application to the Felder–Silverman learning styles model. The generic Oscar CITS adaptation algorithm uniquely combines the strength of an individual's learning style preference with the available adaptive tutoring material for each tutorial question to decide the best fitting adaptation. A case study is described, where Oscar CITS is implemented to deliver an adaptive SQL tutorial. Two experiments are reported which empirically test the Oscar CITS adaptation algorithm with students in a real teaching/learning environment. The results show that learners experiencing a conversational tutorial personalised to their learning styles performed significantly better during the tutorial than those with an unmatched tutorial

    Supporting Inclusive Learning Using Chatbots? A Chatbot-Led Interview Study

    Get PDF
    Supporting student academic success has been one of the major goals for higher education. However, low teacher-to-student ratio makes it difficult for students to receive sufficient and personalized support that they might want to. The advancement of artificial intelligence (AI) and conversational agents, such as chatbots, has provided opportunities for assisting learning for different types of students. This research aims at investigating the opportunities and requirements of chatbots as an intelligent helper to facilitate equity in learning. We developed a chatbot as an experimental platform to investigate the design opportunities of using chatbots to support inclusive learning. Through a chatbot-led user study with 215 undergraduate students, we found chatbots provide the opportunity to support students who are disadvantaged, with diverse life environments, and with varied learning styles. This could be achieved through an accessible, interactive, and confidential way
    • …
    corecore