336 research outputs found

    Non-parametric PSF estimation from celestial transit solar images using blind deconvolution

    Get PDF
    Context: Characterization of instrumental effects in astronomical imaging is important in order to extract accurate physical information from the observations. The measured image in a real optical instrument is usually represented by the convolution of an ideal image with a Point Spread Function (PSF). Additionally, the image acquisition process is also contaminated by other sources of noise (read-out, photon-counting). The problem of estimating both the PSF and a denoised image is called blind deconvolution and is ill-posed. Aims: We propose a blind deconvolution scheme that relies on image regularization. Contrarily to most methods presented in the literature, our method does not assume a parametric model of the PSF and can thus be applied to any telescope. Methods: Our scheme uses a wavelet analysis prior model on the image and weak assumptions on the PSF. We use observations from a celestial transit, where the occulting body can be assumed to be a black disk. These constraints allow us to retain meaningful solutions for the filter and the image, eliminating trivial, translated and interchanged solutions. Under an additive Gaussian noise assumption, they also enforce noise canceling and avoid reconstruction artifacts by promoting the whiteness of the residual between the blurred observations and the cleaned data. Results: Our method is applied to synthetic and experimental data. The PSF is estimated for the SECCHI/EUVI instrument using the 2007 Lunar transit, and for SDO/AIA using the 2012 Venus transit. Results show that the proposed non-parametric blind deconvolution method is able to estimate the core of the PSF with a similar quality to parametric methods proposed in the literature. We also show that, if these parametric estimations are incorporated in the acquisition model, the resulting PSF outperforms both the parametric and non-parametric methods.Comment: 31 pages, 47 figure

    A convergent blind deconvolution method for post-adaptive-optics astronomical imaging

    Full text link
    In this paper we propose a blind deconvolution method which applies to data perturbed by Poisson noise. The objective function is a generalized Kullback-Leibler divergence, depending on both the unknown object and unknown point spread function (PSF), without the addition of regularization terms; constrained minimization, with suitable convex constraints on both unknowns, is considered. The problem is nonconvex and we propose to solve it by means of an inexact alternating minimization method, whose global convergence to stationary points of the objective function has been recently proved in a general setting. The method is iterative and each iteration, also called outer iteration, consists of alternating an update of the object and the PSF by means of fixed numbers of iterations, also called inner iterations, of the scaled gradient projection (SGP) method. The use of SGP has two advantages: first, it allows to prove global convergence of the blind method; secondly, it allows the introduction of different constraints on the object and the PSF. The specific constraint on the PSF, besides non-negativity and normalization, is an upper bound derived from the so-called Strehl ratio, which is the ratio between the peak value of an aberrated versus a perfect wavefront. Therefore a typical application is the imaging of modern telescopes equipped with adaptive optics systems for partial correction of the aberrations due to atmospheric turbulence. In the paper we describe the algorithm and we recall the results leading to its convergence. Moreover we illustrate its effectiveness by means of numerical experiments whose results indicate that the method, pushed to convergence, is very promising in the reconstruction of non-dense stellar clusters. The case of more complex astronomical targets is also considered, but in this case regularization by early stopping of the outer iterations is required

    Regularized Gradient Descent: A Nonconvex Recipe for Fast Joint Blind Deconvolution and Demixing

    Full text link
    We study the question of extracting a sequence of functions {fi,gi}i=1s\{\boldsymbol{f}_i, \boldsymbol{g}_i\}_{i=1}^s from observing only the sum of their convolutions, i.e., from y=∑i=1sfi∗gi\boldsymbol{y} = \sum_{i=1}^s \boldsymbol{f}_i\ast \boldsymbol{g}_i. While convex optimization techniques are able to solve this joint blind deconvolution-demixing problem provably and robustly under certain conditions, for medium-size or large-size problems we need computationally faster methods without sacrificing the benefits of mathematical rigor that come with convex methods. In this paper, we present a non-convex algorithm which guarantees exact recovery under conditions that are competitive with convex optimization methods, with the additional advantage of being computationally much more efficient. Our two-step algorithm converges to the global minimum linearly and is also robust in the presence of additive noise. While the derived performance bounds are suboptimal in terms of the information-theoretic limit, numerical simulations show remarkable performance even if the number of measurements is close to the number of degrees of freedom. We discuss an application of the proposed framework in wireless communications in connection with the Internet-of-Things.Comment: Accepted to Information and Inference: a Journal of the IM

    A new semi-blind deconvolution approach for Fourier-based image restoration: an application in astronomy

    Get PDF
    The aim of this paper is to develop a new optimization algorithm for the restoration of an image starting from samples of its Fourier Transform, when only partial information about the data frequencies is provided. The corresponding constrained optimization problem is approached with a cyclic block alternating scheme, in which projected gradient methods are used to find a regularized solution. Our algorithm is then applied to the imaging of high-energy radiation emitted during a solar flare through the analysis of the photon counts collected by the NASA RHESSI satellite. Numerical experiments on simulated data show that, both in presence and in absence of statistical noise, the proposed approach provides some improvements in the reconstructions
    • …
    corecore